102-A06 Computing a to the power b (POW)

Work to do

- You will add the following prototype to **tools.h** int pow (int a , int b);
- You will implement the following function in **tools.c**
- You will invoke this function when menu option 2 is chosen from the **main.c** *main* function.
- You will invoke this function from **tests.c** several times with different parameters and test the return value to make sure it's working completely. Consider this as an implementation of a test-harness that will run automatically.

You need to write a function named *pow* which takes two positive integers a and b and returns a to the power b. You will have to compute this value by only using multiplications; a^{b} means that a is multiplied by itself b times.

If one or both of the parameters are non valid (e.g. negative), your function will simply return -1. The code in the *main* functions in **main.c** and **tests.c** will always check if the call went ok by comparing the return value to -1, it it's equal, the parameters were invalid otherwise the function did its job. Make sure you include such scenario in your test harness.

Example(s)

Here are some examples of return values when calling pow;

pow (2,9)	\rightarrow	512
pow (3,3)	\rightarrow	27
pow (30,0)	\rightarrow	1
pow(-1,3)	\rightarrow	-1

Hints

• n/a

Testing

Input		Output	
a	b	Expected	Observed