
Role of the C language in Current Computing Curricula
Part 2 – Beyond Survey Results

Alessio Gaspar,
Alessio@lakeland.usf.edu

University of South Florida Lakeland
3433 Winter Lake Rd, Lakeland 33803, Fl, USA

 Abdel Ejnioui

aejnioui@lakeland.usf.edu
University of South Florida Lakeland

3433 Winter Lake Rd, Lakeland 33803, Fl, USA

 Naomi Boyer
nboyer@lakeland.usf.edu

University of South Florida Lakeland
3433 Winter Lake Rd, Lakeland 33803, Fl, USA

Role of the C language in Current Computing Curricula
Part 2 – Beyond Survey Results

Abstract
In December 2006, a survey hosted on surveymonkey.com was publicized through various ACM mailing

lists (SIGCSE, SIGITE). Its purpose was to determine the role of the C language in the various modern
computing curricula (CS, IT…). This paper summarizes the results and stresses out the quantitative usage
of this language in introductory and intermediate programming courses as well as in upper-level
undergraduate courses (e.g. operating systems). We also present the qualitative reasons provided by our
respondents for, or against, the adoption of the C language in these various contexts. We then discuss these
results and propose an analysis of when in the curriculum the C language might be most useful, how it
should be introduced and what specific topics should be covered in such a re-designed “intermediate
programming in C” course.

1. Introduction
This second part of our paper revisits the results presented in the previous one and then

discusses the C language from the perspective of past efforts to improve the pedagogy of
programming courses which have to rely on it. We then discuss the preferential niche for
this language in modern curricula. The rest of the paper will therefore be organized as
follows; Section #2 will discuss the arguments relative to the inherent complexity of the
C language from a technical perspective. We will discuss how these difficulties can
become advantages when using C to achieve different pedagogical objectives. Section #3
will then discuss the role of C from a temporal perspective, that is, when is this language
best suited to be introduced to students? Section #4 will complete this discussion by
revisiting the contents of a C course not meant for beginners. Section #5 will offer some
advices on how to address the various issues raised in the previous discussions as well as
describe the main objectives of the CLUE project the authors are working on.

2. Complexity of C
The figures from Table 1 revealed that only 23.71% of our participants are using C in

either introductory or intermediate programming courses. While this number is
sufficiently small to indicate that C is not a beginner’s language, it is also paradoxically
high when compared to the other surveyed languages. The adoption rates of C are higher
in both course levels than the rate of other languages such as C#, Perl, PHP, VB and even
Python. The results are surprising for the latter since it benefits from obvious
pedagogical benefits and a rather dedicated and enthusiastic community.

Since its early adoption, the C language has never been considered as an appropriate
learning tool for beginning programmers [8, 9]. However, this survey revealed that the
reasons for this pedagogical position have evolved over time. Specifically, technical
issues with the language itself are no longer the top concerns, but the lack of object
oriented features is. How can this explained? The comments gathered by the survey
indicate that the object-first approach is the most popular approach among respondents.
Some also pointed out that typical data structure courses (CS-2) are increasingly making
usage of object libraries such as the Standard Template Library (STL). This clearly

makes the C language, regardless of its intrinsic difficulties, not suitable for introduction
before the progressive completion of CS-1 + CS-2 by students.

As previously noted and underscored by others [10], it is believed that many of C
features are not intrinsically wrong. Because of the popularity of Java, C++, and C# in
academic and industrial settings, very few still consider them harmful to student
programming education [7]. Concurrent to this situation, the sophistication of Integrated
Development Environments (IDEs) is currently providing an unprecedented level of
assistance to developers and students with features such as syntax highlighting and
structures collapsing [12]. The wide availability of these IDEs and extensive online
documentation for object libraries are all convincing factors that overshadow the
specifics of a given language and at the same time improve the learning experience of the
students with the language.

But what about the inherent difficulties of the C language? When saying that C is “too
complex for students”, most educators refer to aspects of the language related to pointers
arithmetic, explicit memory manipulation and so on. What can be done to address these
issues in C without having to change the language itself? In agreement with the findings
in [10], the authors of this survey strongly believe that most problems are located at the
runtime and compile-time levels, and can be addressed by appropriate features of the
development environment. In addition to syntax highlighting and debuggers, meaningful
compilation-time error messages can significantly help students on these intricate
language aspects. In fact, the findings of the survey confirmed that the lack of
appropriate help at both runtime and compile-time in tracking bugs efficiently are
perceived as a hindrance to the learning process. While this situation is unacceptable
when introducing students to programming, it can be a simple difficulty to overcome if C
is used later in the curriculum to strengthen programming skills and prepare students for
the upper level courses. In this perspective, the objectives are different and more aligned
with what C is identified as suitable for. Assuming that the intent is not to shun C, the
question remains as to the best time in a computing curriculum to introduce this system
language, what to cover in such a course and how to do it efficiently

3. Appropriate Time to Introduce C
The expressed need for C in core courses of most computing programs such as

operating system, computer architecture, and networking, and its absence from core
programming courses such as CS-1 and CS-2, constitutes a peculiar curricular paradox.
This paradox bears the question of how instructors manage to cope with the missing pre-
requisite knowledge. Following the announcement of this survey’s results on SIGCSE,
feedback was solicited from instructors teaching operating systems in departments in
which the C language was not taught as a mandatory programming course. Received
email responses indicated that a “crash course” in C, offered during the first weeks of the
course, was the most common approach to let students discover the language mostly on
their own. On the other hand, many CS departments offer a Unix/Linux programming
course which aims at introducing students to system development on these platforms.
This often includes an introduction to C, shell scripting and various GNU utilities. Such
a course is clearly not intended for beginners and represents an efficient way to prepare
students, after a CS-1 + CS-2 progression, to more advanced system-oriented topics. It is

important to note that such courses are focused on programming techniques and concepts
without any emphasis on software engineering practices.

At the authors’ institution, many students come to a gate course, the COP 3515 Program
Design, after attending multiple introductions to programming using Java, C++, VB, or
other high level languages. The use of C in this course allows students to revisit
programming concepts with a more technical spin. With this in mind, the stack is used to
explain variables duration and parameter passing while the heap is introduced along with
the nuts and bolts of dynamic memory allocation. This approach strengthens already
acquired knowledge and, oftentimes, justifies programming precepts that students have
been following rather blindly before. The difficulties of C are dissected and used to
reinforce the students’ programming discipline. Upon successful completion of this
course, students accepted into the CS or IT programs are found to have a deep
understanding of the programming activity.

4. Appropriate Material for a C course
Regardless of the approach taken, paced or crash course, it is clear that C is best

introduced at a faster pace to students who have already acquired basics of programming.
The authors of this survey believe that three distinct aspects should be covered in an
intermediate C course.

At first, C can be used to revisit programming concepts and strengthen students’ skills.
It is easy to cover C syntax with experienced students in one or two sessions with a
strong focus on the language notorious pitfalls [13, 14]. On the data structure side, these
sessions can also be used to show to students how far a language like C can go to support
modularity and object orientation. The material presented by Stroustrup [15] provides a
good example of such a demonstration. Once the basics have been covered,
programming tools such as debuggers and makefile scripts can be introduced along with
extensive hands-on practice to help students scrutinize their code through cursory
debugging and code-reading skills. Students tend often to look at their code from the
perspective of an executive summary; “it does this”. However, when the code does not
execute as they expect it to, they are unable to analyze it line per line. These first
sessions are also a good opportunity to guide students through syntactical, linking and
runtime errors. Exposure to typical outputs form such errors is the best way to overcome
the lack of clarity familiar in many traditional C development tools.

The main part of such a course can be devoted to have students experiment with explicit
memory allocation and pointers. These activities generally lead to a discussion of the
executable memory image, which can be used to revisit and justify programming
languages concepts from a more technical perspective. For instance, the heap can be
used to explain memory allocation and the storage of literals (e.g. meaning of char* p =
“hi"”). In addition, the stack can be used to explain recursion and parameter passing.
Furthermore, pointers can be used to contrast parameter passing by reference and value.
Other topics unfamiliar to most students such as libraries, linkers, and loaders can be
included also in this coverage.

Lastly, a third of the class sessions can be devoted to explicit preparation of students for
upper level courses. To use the operating systems course as example; explicit memory
allocation can be revisited to introduce students to some allocation algorithms and deeper
explanations on the operation of the malloc system call. In addition, system calls

regarding other aspects of operating system can be introduced to students through simple
exercises involving processes creation (e.g., fork, join), inter-process communication
(e.g., pipes, semaphores), or even network communication (e.g., sockets) in preparation
for a networking course. Furthermore, garbage collection algorithms can also be
introduced to have students write their own GC library in C [16].

Although this type of content is not entirely novel, its progression and rationale
significantly departs from current offerings. For better appreciation of this argument, the
reader is invited to consider the most popular programming textbooks employing the C
language. Too many are introductory in nature and approach the C language as if it was
meant for absolute beginners [18]. The focus of such texts is typically on program design
issues and elementary control flow structures. At the other end of the spectrum, system-
programming texts focus on system calls, often in a Linux/Unix environment, and fail to
build an explicit link with the previous programming knowledge of students. While the
latter is much closer to the model suggested in this paper, some improvements can be
adopted in order to better integrate the material to support the rest of the system-oriented
components of the curriculum.

5. Pedagogical aspects: do you have a CLUE?
The findings of the survey indicate that C has a niche and would most likely integrate

best with current curricular practice if introduced in a course after the CS-1/CS-2 pair. At
this point, the pressing issue to be addressed is the pedagogical approach that would best
serve such a course and how it can be justified as an elective among the already crowded
list of elective courses.

Many responses in the survey echoed concerns exposed sometime ago about the need
for an appropriate development environment to learn C [10]. Since then, many projects
have targeted other languages by developing excellent educational IDEs [2, 12, 19].
Some even applied these design principles to C [20]. Beyond syntax highlighting and
debuggers, C could also benefit from visualization tools to help students understand
concepts such as memory allocation and stack management. These would definitively
enhance the pedagogy of a course by providing students with different learning channels
(i.e., visual or otherwise) that might be more suited to their learner type [21, 22]. For
instance, engineering students are mostly visual in their learning type. It is reasonable to
think that complementing a debugger with such visualization tools would improve
teaching effectiveness. In order for such a tool to address the concerns about the
difficulty the students encounter in interpreting error messages, the authors of this survey
propose to use a C language interpreter, which would perform elementary code analysis
to produce more intuitive error messages and warn students about common syntactical
pitfalls. Although this approach is similar to others [10], it is also meant to complete
such an interpreter with an automatic bug detection tool inspired by modern code
inspection tools [23]. These ideas are being investigated in the context of a C Language
Undergraduate Environment (CLUE) toolkit that will be composed of a C interpreter, a
memory visualization component, and a rudimentary code analysis tool [24].

If system-related topics are not to be covered at all in a given curriculum, such a course
would most likely be useless. However, if the intent is to prepare students to the many
aspects of the computing disciplines, including system-level topics, then such a course
can help balance the preparation of students to a wider variety of upper level

undergraduate and ultimately graduate courses. Let us compare the operating systems
and software engineering undergraduate courses in order to illustrate this argument. Both
are upper level undergraduate courses, yet they benefit from different pedagogy at the
curricular level. In the case of software engineering, early programming courses
carefully lay down the basic concepts to help students progressively build their design
skills in addition to programming ones. This approach is pedagogically sound and
follows the principle of introducing early and repeating often what is important [2]. On
the other hand, concepts such as concurrency and system calls are often absent from the
CS-1+CS-2 progression and are left to the very end of the course tracks. As a result, too
many institutions throw students, who have only experience in high level languages and
software engineering, directly into a three-credit operating system course in which they
are to be initiated, at lightning speed, to another entirely different aspect of the computing
disciplines. While the operating systems course is meant to discuss operating systems
internals, it is disturbing to do so in front of an audience who never experienced making a
simple system call. The classic use-modify-create progression, known to object-first
proponents, is not implemented in such courses. This situation forces instructors to cram
together what should be two distinct courses or water down the material to a level below
of what it should be. A few members of the SIGCSE community have already underlined
the tremendous importance of concepts such as concurrency and the benefits that could
emerge from introducing them early, thus leveraging the same pedagogical arguments
developed by the objects-first proponents.

Beyond these pedagogical arguments, it is ultimately the targeted learning outcomes at
the department level which will dictate which area of the computing discipline will
receive particular focus. This is an issue much more difficult to address and beyond the
scope of this paper. The above recommendations are only meant to address the curricular
paradox caused by teaching the C language late in system-level inclined curricula.

6. Summary
This paper reviewed results of a survey aimed at assessing the role of the C language in

current curricula. These results clearly indicate that (i) C is not suitable for introductory
and intermediate programming courses, while (ii) it is suitable for system-level
programming in upper level courses. In addition, this paper discussed a wide spread
“curricular paradox" by which C is required in upper-level courses but not taught in
lower-level programming core courses (e.g. CS-1, CS-2, CS-3). This often results in C
being “left as an exercise” for students to learn on their own when reaching these upper
level courses. It makes a difficult language even more difficult, potentially pushing
students away from system-oriented computing courses and wasting an opportunity to
leverage the particularities of this language to strengthen the students’ programming
skills. To remedy this paradox, it was suggested that C’s intrinsic difficulties ought to be
addressed by the use of a proper set of development and visualization tools to effectively
reinforce student programming discipline and technical knowledge of programming
languages. The paper goes further to describe a targeted course, a proper timeline for
introduction, and the progression of this particular content in the computing curriculum.
The outcomes might be the development of a qualitatively different set of skills and
knowledge in students through a motivated and significant exposure to concepts such as
pointers, memory management, parameter passing, and variables’ scope. These concepts

are critical for both professional and graduates focusing on system aspects of our
discipline such as operating systems but also compilers and advanced languages
paradigms.

7. References
[1] Kolling, M., Quig, M., A. Patterson, J. Rosenberg, “The BlueJ system and its pedagogy”, Journal

of Computer Science Education, special issue on learning and teaching object technology, vol 13,
no 4, 12/2003

[2] Canning, J., Moloney, W., Rafyemehr, A., Rey, D., Reading types in C using the right left walk
method, June 2004, ACM SIGCSE Bulletin , Working group reports from ITiCSE on Innovation
and technology in computer science education ITiCSE-WGR '04, Volume 36 Issue 4

[3] Eckerdal, A. ; Berglund, A.What does it take to learn "programming thinking"?, ICER 2005, 1st
International Computing Education Research Workshop; Seattle, Washington, USA. ACM press;
2005. pp. 135-43.

[4] Fitzgerald, S.; Simon, G.; Thomas, L., Strategies that Students Use to Trace Code: An Analysis
Based in Grounded Theory, ICER 2005, 1st International Computing Education Research
Workshop; Seattle, Washington, USA. ACM press; 2005.

[5] Stephen, N., Freund, Roberts, E,S., Thetis: an ANSI C programming environment designed for
introductory use, March 1996, ACM SIGCSE Bulletin , Proceedings of the twenty-seventh
SIGCSE technical symposium on Computer science education SIGCSE '96, Volume 28 Issue 1

[6] Cross, J.H., jGRASP: an integrated development environment with visualizations for teaching
Java in CS1, CS2, and beyond, April 2006, Journal of Computing Sciences in Colleges, Volume
21 Issue 4

[7] Koenig, A., C Traps and Pitfalls, 1 ed. Addison-Wesley Professional; 1989 Jan.
[8] Van Der Linder, P., Expert C Programming: Deep C Secrets. SunSoft Press; 1994
[9] Stroustrup, B., The C++ Programming Language (Special 3rd Edition), Addison-Wesley

Professional; 3 edition (February 15, 2000)
[10] Blunden, B., Memory Management: Algorithms and Implementations In C/C++ , 2002, wordware

publishing
[11] C How to program, 5/e, Deitel
[12] Allen, E., Cartwright, R., Stoler, B., DrJava: a lightweight pedagogic environment for Java,

February 2002, ACM SIGCSE Bulletin , Proceedings of the 33rd SIGCSE technical symposium
on Computer science education SIGCSE '02, Volume 34 Issue 1

[13] Demetrescu, C.; Finochi, I., Leonardo: A C programming environment for reversible execution
and software visualization. [Web Page] 1999; http://www.dis.uniroma1.it/~demetres/Leonardo/.
[Accessed Apr 2006].

[14] Felder, R.M., Silverman, L.K., "Learning and Teaching Styles in Engineering Education," Engr.
Education, 78(7), 674-681 (1988)

[15] Larsen, J., McCright, P.R., Weisenborn, G., Coordinating Sensory Modality in Learning Styles
and Teaching Styles in Undergraduate Engineering Education

[16] Engler, D., Coverity, available at http://coverity.com/
[17] Gaspar, A.; Ejnioui, A.; Boyer, N., CLUE: C Learning Undergraduate Environment, University of

South Florida at Lakeland Scholarship Day, May 2006, Lakeland, FL, Animated slides available
at: http://softice.lklnd.usf.edu/~alessio/2006a-clue.pps

[18] Gaspar, A., Ejnioui, A., Boyer, N., Role of the C language in modern computing curricula, Survey
monkey results available at
http://surveymonkey.com/DisplaySummary.asp?SID=3039744&Rnd=0.9342091

