

Active learning in introductory programming courses through
Student-led “live coding” and test-driven pair programming

Alessio Gaspar, Sarah Langevin

University of South Florida, 3334 Winter Lake Road, 33803 Lakeland, FL, USA
[alessio | sarah] @ softice.lakeland.usf.edu

Abstract
This paper revisits two emerging active learning practices in
introductory programming courses and proposes ways they can
be further improved. We first focus on a category of
assignments which can further support the switch from
instructor-led to student-led live coding practices, thus helping
develop the former into a real active learning pedagogy. Then,
we propose to leverage test-driven development techniques
through assignments meant to engage students in competitive
learning without the drawbacks usually associated with this type
of programming competition framework. The new activities
have been tested in courses taught at the University of South
Florida and observations of their impact are discussed with
respect to constructive alignment theory, constructivist
educational approaches, discovery learning and pair
programming / test-driven techniques.

Keywords: Computing Education Research, CS-1,
Introductory Programming Courses, live coding, active
learning, pair programming, test-driven development

1. INTRODUCTION

Problem Statement
The pedagogy of introductory programming courses is one of

the most prolific, if not controversial, topics in the relatively
new computing education research community. The sheer
number of publications devoted to this single topic, as well as
the traffic generated on the ACM’s SIGCSE mailing list by
related discussions, both confirms the importance of CS-1
pedagogical research in our community.

Among the plethora of teaching and learning approaches
which have been formulated, active learning techniques caught
our attention. The very idea of active learning is to engage
students in various activities which aim at facilitating the
acquisition of new knowledge and skills in a learner-centered
manner. These practices are inspired by constructivist theories
in educational psychology and typically involve activities such
as case study, reflections on class notes, group discussions,
hands-on experimentations, etc. These also each promote, to a
certain extent, a discovery learning approach in which the
students, under the guidance of their instructors, (re-)discover
autonomously the knowledge units they are being taught. It is
not the objective of this paper to delve in the theoretical
foundations of such approaches. Instead, we will address the
limitations of commonly used active learning approaches to
teaching programming and discuss how to improve them.

Objectives
The specific issue this paper is concerned with is the

improvement of newly introduced active learning practices in

introductory programming courses. To this end, we will review,
and improve on two categories of classroom activities: “live
coding” and test-driven development.

While a significant amount of work has already been devoted
to these topics, we found the two above-mentioned practices to
be poorly documented in the literature. We share our experience
in developing new aspects of these activities and discuss their
implementations in two introductory programming courses
taught at the University of South Florida (USF). These two
courses are interesting to lead such a preliminary study in so far
that they gathered a diverse student population (non-traditional
age groups, diversified majors, various levels of preliminary
exposure to programming…) and employed a variety of
languages ranging from flowcharts interpreters [1,2,3] to Java
[4] and C [5]. Our discussion provides insights as to the best
practices in implementing similar activities, singles out and
details a specific assignment in both categories, and review
results at the light of underlying educational theories

Paper Organization
Section #2 will discuss how live coding activities, which are

traditionally mostly instructor-led, are being converted into
genuine active learning practices by the computing education
community. We will go further in this direction by examining
how certain categories of assignments help improving the
pedagogical impact of such practice. Section #3 will then
propose to leverage test-driven development techniques and pair
programming practices in the classroom to engage students in a
form of competitive learning focused on code quality as
opposed to encourage quick, dirty but efficient coding. Section
#4 will then conclude by summarizing this paper and discussing
our related ongoing work.

2. STUDENTS-LED LIVE CODING

The term “live coding” is often used to refer to a teaching
practice by which the instructor exposes the programming
thought process leading him to solve a given problem by
programming “live” while connected to a data projector. This
section focuses on improving a more recent variant which we
refer to as student-led live coding

Motivation & innovative aspects
The qualitative leap, from simply showing complete solutions

to students on a slide to detailing the process which leads to
them by coding it “live” in front of the class, significantly
improves the pedagogy of teaching programming. However,
this practice is still mostly passive form the students’ point of
view. The fact that some of these live coding sessions have been
recorded by instructors so that students can view them out of
class is further indication of the inherent lack of interactivity in
this kind of activity. Therefore, while the objective of exposing
the programming thought process is reached, we are still
fundamentally dealing here with a passive learning strategy.

Given the advantages of active learning and of live coding, it is
tempting to devise a way to combine their respective benefits
into a single activity. This is essentially the idea which was
originally mentioned on the SIGCSE-members mailing list
almost a year ago [6]. The innovative aspect is to switch the
focus of the activity away from the instructor and assign to a
student the role of leading the live coding of a particular
assignment. How is this different from simply assigning
students exercises which are incorporated to the lecture material
[7, 8, 9]? For instance, the ubiquitous presenter team at UCSD
[10] already explored the use of specific instructional
technologies (tablet PCs, web browsers, UP software) to enable
instructors to collect digital submissions during classes, pick
some, and show them back to the entire class in order to
comment, correct or simply annotate them.

The difference is essentially similar to the one existing
between instructor-led live coding and simply showing slides
with the complete solution to an assignment to students. In both
cases, we are not only interested in the end product students
come up with but rather in the way they produce it. Just as
instructor-led live coding exposes the instructor’s programming
thought process for students to learn from, the student-led
version expose the students’ thought process for the instructor
to provide feedback on. The parallel goes further. During
instructor-led “live coding”, the errors and hesitations are
important in so far that they show students that;

(1) The programming process is not linear, nobody writes
5000 lines of code without jumping back and forth in
the code to adjust things and…

(2) Making errors happens to all of us but catching them
in a timely manner is what will ultimately impact the
quality of the resulting code.

The same goes with students-led live coding with one major
difference; the nature of the errors an instructor is likely to
commit is different from the nature of the errors and difficulties
students might come across. Our hypothesis is that because
students will relate more closely to their classmates’ difficulties
they will also learn more from seeing them exposed and
criticized by other classmates or the instructor. We also believe
this approach to be more natural than having the instructor fake
errors during live coding. Students-led live coding is therefore
complementary and addresses different learners’ needs.

Going a little further
Our focus has been so far on the live coding activity from the

students’ perspective. It might be useful to change focus in
order to further improve this practice. How can we improve the
students-led live coding without modifying the process itself?

The previous sections didn’t detail the nature of the problems
the students would have to solve in such live coding sessions.
Most readers probably assumed that most textbook exercises
would fit the bill. However, we would like to differentiate
between two categories of programming exercises; those who
have a single correct solution and those who feature multiple
functional solutions differing at the design or programming
style levels. Considering the former, very little can be done
during these live coding sessions besides identifying the
syntactical and logic errors committed by the student
performing the live coding. While this is already extremely
useful from a pedagogical standpoint, let’s consider the benefits
of assigning the second category of problems to the students

Implementation & Best practices
This approach was implemented in two courses taught at the

University of South Florida (USF). In order to put our
discussion in the appropriate context, we will start with a brief
review of their defining characteristics.
(1) “Programming Concepts” (cop2510) is meant for both

students who already took an introductory programming
course at a community college as well as for complete
neophytes. This course is usually taught in the department
with an object-first approach and relies on either the Java
or Python programming languages. When teaching the
course, this author has been using Java and the BlueJ
development environment [4].

(2) “Program Design” (cop3515) exists in two versions;
computer science and information technology. In both
versions, this course requires students to pass with a
minimal grade prior to being accepted in either program.
Typically, students taking this course had already several
programming courses at community college level including
cop2510. This semester, the course was taught using the C
language in a Linux environment. The objective was to
articulate the transition between introductory programming
courses and system-oriented upper level courses such as
operating systems.

In this context, student-led live coding has been implemented
with different objectives in mind. For cop3515, the technique
has been used to first introduce recursion to our students. The
other topics covered in the course were technical in nature
(stack, heap, memory management) but offered difficulties of a
different nature. The assignment presented in the following
question is the one we used in this course. Concerning cop2510,
the technique has been used in a more classic way, letting
students work on design-from-scratch problems involving the
definition and implementation of several classes.

What are the lessons learned so far? The first lesson learned
is one of conviviality and classroom dynamics. Our first attempt
at focusing the live coding activity on students resulted in
picking a student, having her walk to the podium PC connected
to the data projector and let her work in front of everyone. For
many students, this contributed to reduce the participation to a
strict minimum as they felt “singled out” and uncomfortable
standing and working in front of the entire class. This issue was
addressed this semester by ordering a wireless keyboard-
touchpad device which could be easily passed among seated
students as suggested in the original SIGCSE-members mailing
list posts. A 2.4 GHz RF device allowed an increased range of
operation thus annihilating the secure feeling of the students
populating the back rows. It also helped considerably to have
students connect to their own accounts on a server instead of
having to work on the podium PC and then get their results on a
thumb drive. This was no problems with cop3515 since
students’ accounts were hosted on a Linux server. Each student
selected to work on the next live coding exercise, simply logged
in using an SSH client and a X-server (X-Ming) and started
working in her own environment. In cop2510, as we used BlueJ,
each student had to work on the podium PC locally. This issue
can however be addressed by using the plug-in developed for
BlueJ which allow the IDE to seamlessly access files stored in a
student account on a remote Linux server [11].

Another interesting practical question is the choice of the
next student to participate. During the first couple of sessions,
the choice is random. However, as your knowledge of their
strengths and weaknesses grows, you will be faced with the
dilemma of either selecting students which will serve as

“model” to others or students who are in difficulty with the
current material. From our personal experience, the former
category is most beneficial during the first couple of live coding
sessions. It is difficult to convince students of the usefulness of
such an activity if the first attempts turn into an embarrassing
silence. On the contrary, a motivated student, regardless of the
quality of her coding, will actually help introduce the activity
and reduce the stress levels of those who will soon be
participating in it. After one or two sessions, the choice of who
goes next is almost irrelevant in so far that the routine will be
established, and students will most likely already realize what
they can get from these exercises. At this point, each difficulty
encountered by the live coding student, each alternative solution
they will come up with, becomes a hook for the instructor‘s to
informally introduce the lecture material in a much more
problem-solving based and thus less boring manner.

Assignment example
The following assignment has been given in the cop3515

“program design” class using the C language. It took place
within the first 4 weeks of the course and was part of a series of
questions focused on recursive programming. Here is how the
assignment read;
Implement an iterative and recursive version of a function
which will return how many times its (strictly positive integer)
argument can be divided by two until you get a non null
remainder. Examples;

 F (4) 2 time(s)
 F (5) 0 time(s)
 F (6) 1 time(s)
This assignment is purposely open to interpretation but after a

small lecture on recursion, a handful of classic examples and a
couple of take home exercises, our students were ready to
innovate (or realize they had to spend some more time on the
topic). Here are the various results we obtained for this exercise;

Classic iterative solution:
int F (int no)
{
 int count = 0;
 while (no % 2 == 0)
 {
 no /= 2;
 count++;
 }
 return count;
}
Classic recursive solution, the result is built as the recursive

calls return (this is the solution which was expected from
students due to its similarity with the lecture examples). It is
interesting to note that while developing this solution, some
student suggested making the recursive call as: F (no/=2);
while not strictly incorrect, this kind of remark is a good starter
for a class discussion and explanation of what superfluous code
can mean. The stack diagram was used to show the student how
this difference impacts the local variables. This helped in
realizing that although not leading to a bug per se, this approach
would be comparable to walk in a direction taking 3 steps
forward and 1 step back.

int F (int no)
{
 if (no % 2 == 0) return 1 + F (no / 2);
 else return 0;
}

The following solution illustrates how the result can be
constructed while making the recursive calls instead of as they
are returning. This solution wasn’t originally planned for this
lecture and a student came across it. Explaining this new
possibility in details (using stack diagrams) helped reinforce the
understanding of the classic recursive solution. This was true
even with students who didn’t think of this alternative at first or
those who needed a refresher on the working of the stack.

int F (int no , int count)
{
 if (no % 2 == 0) return F (no /= 2 , ++count);
 else return count ;
}
Finally, the two last solutions really surprised us. The lecture

on recursion took place right after explaining variables scope
and duration based on their location in the stack and heap
segments. Some students, armed with this freshly acquired
knowledge, immediately saw a way to apply it to the problem at
hand. While discussing incorrect versions of the above
functions, one bug caused the count to never be modified either
when passed to the recursive call or when incremented before to
be returned. This motivated some students to come up with a fix
which led to the following solutions using respectively a global
variable or a static local variable;

int counter = 0;
int F (int no)
{
 if (no % 2 == 0)
 {
 counter++;
 return F (no / 2);
 } else
 return counter;
}

int F (int no)
{
 static int counter = 0;
 if (no % 2 == 0)
 {
 counter++;
 return F (no /= 2);
 } else
 return counter;
}
These solutions allowed for a discussion of the potential

problems that could emerge from exposing a global variable
when other programmers would try to reuse this code.

Discussion
The above example showed that using assignments with

multiple correct solutions in the context of student-led live
coding has an interesting pedagogical potential and enhances
further this type of practice. Several observations resulted from
our first experimentations with this approach. At first, we
believe a carefully crafted series of assignments would allow for
the entire lecture contents to “emerge” in a didactic manner
rather than being explicitly stated through a slide show. It was
really rewarding to witness students'’ remarks prompt for the
answers that constitute the material of a traditional lecture on
the topic. While this is the fundamental characteristics of any
active learning methodology, we also believe that these
particular assignments actually bordered on discovery learning
[16]. It is our intent to explore further the theories and practical

applications of this approach to improve our future work on
student-led live coding.

Secondly, this activity also enabled students to not only apply
or adapt, through analogical thinking, the material introduced in
the preceding lecture but also to generalize it. Some beginning
programmers are on the outlook for a “book of answers” which
would associate to every possible exercise or assignment, a
solution template they could memorize and regurgitate at the
exam in order to get a passing grade. This attitude and
misconception of what programming is, often finds its root in
either a fundamental inability to grasp the nature of the
programming activity or, sometimes, in the bad habits learned
in a first-programming course which requested students to
modify existing code through cut and paste operations all
semester long. The above-mentioned assignment was given in
class after a short lecture on recursion which illustrated the
principle with the help of the classical factorial and Fibonachi
numbers examples only. It is interesting, given this limited set
of examples, to see how the class, as a whole, ended up going
well beyond the direct application of these patterns to solving
new problems. Once the initial attempts at defining F (n) in
terms of F (n-1) instead of F (n/2) failed, students started
generating a diverse spectrum of solutions to this simple
problem. This is the clear sign of ongoing cognitive processes
which go beyond straightforward analogy-based thinking but
attempt to generalize the knowledge provided in the lecture into
new ways to develop recursive solutions. Quite naturally, some
of these solutions were less desirable than others but they all
contributed nonetheless to instruct the entire class on both what
is and what is not appropriate. In more formal terms, our
students have been moving along the SOLO (Structure of the
Observed Learning Outcome) taxonomy [17,21].

We also observed that this type of activity helps students gain
a better understanding of the grading process. Previous work
already stressed out that many students have misguided
conceptions about the very idea of program correctness [12].
For some, a successful compilation means that the job is done
and the program is ready to be turned in. Only few beginning
programmers will actually test their code at runtime in various
scenario and even less will understand at first that the test
harness must be carefully crafted to tell us anything at all about
the program’s correctness. Addressing such misconceptions is
clearly an important learning outcome for a programming
course and one that can’t be tackled too early. When engaging
students in instructor-led live coding, a good example of the
expected product and process is already provided. This helps
them understand what they will be expected to produce.
However, with student-led live coding, many more
opportunities for the instructor to correct students’ code “on the
fly” emerge. Quantitatively, the sheer amount of opportunity for
the instructor to provide feedback to students makes this
approach worthwhile. Not only can the errors made by the live
coding student be addressed and discussed in class, but the her
classmates’ suggestions can also be used to detect and address
misunderstandings. The lecture then almost emerges from these
interactions and provides both students and instructors with a
much more motivational framework as compared to lecture-
only scenarii. From a more qualitative standpoint, each
correction from the instructor provides an opportunity for
students to get a glimpse at the way program correctness is
evaluated by a more experienced programmer. Not only that,
but this same evaluation process is most likely the one that will
be employed to grade their assignments and exams. Therefore,
student-led live coding is not only about the instructor gaining a

better understanding of his students’ cognitive processes but
also about the students themselves gaining a better
understanding of how the instructor perceives and validates
their work. This goes a long way toward reconciling the courses
objectives, expectations, examination modalities and teaching
practices. According to the proponents of the constructive
alignment theory [13] students with diverse motivations can be
effectively channeled into learning the very set of skills the
course is targeting by ensuring an appropriate overlapping of
this skill set and the skills necessary to actually simply pass the
exam. In our context, we demonstrate continuously the concrete
expectation for both the final product (code) and its
development process thus allowing students to adapt to match
these over the course of the semester.

Finally, it has been already said that during student-led live
coding sessions, the rest of the class tends to assume the role of
the observer as defined in pair programming practices [14,15].
Pair programming has already been shown to have an
interesting impact on programming courses’ pedagogy. It is
therefore very positive for student-led live coding to trigger
some of the dynamics observed in these studies. What we
observed during our practice is that the direct neighbors of the
live coding student seem to generally assume a higher degree of
responsibility regarding the quality of the produced code. While
this is not a systematic occurrence, it seems that once a student
is selected as the live coder for the next assignment, his
neighbors feel that this is their responsibility to convey
feedback to their classmate. The physical proximity means that
their interventions can be a simple whisper, nod or finger
pointed at the screen as opposed to the way other classmates
will have to “stand up” to participate. We believe that this is a
result of an all too common tradition of holding back during in-
class participation to avoid embarrassment. However, because
of this effect, the instructor can, if the entire class isn’t
participating enough, solicit feedback from the students most
likely to volunteer it; the live coder’s neighbors. This also
suggests that, if possible at all, re-arranging the sitting
arrangement of a computer lab might lead to better
participations. While this is not a novel idea in itself, very few
classrooms offer this type of flexibility to instructors in the
computing disciplines curricula.

3. ANTAGONISTIC LEARNING ACTIVITIES
In the previous section, we mentioned that some behaviors

observed during student-led live coding sessions relate to the
“observer role” defined in pair programming terminology. This
section further explores how pair programming can be enhanced
through test-driven development practices in order to create
early assignments, meant for introductory programming
courses, which engage students in a quality-focused form of
competitive learning.

Motivation & innovative aspects
The literature on pair programming in a CS1 course is

abundant [14, 15] and already identified many pedagogical
benefits of this approach. Pair programming can mainly be seen
as a collaborative learning strategy. In contrast with such
approaches, mini-games such as Robocode [22] have been
designed to facilitate the learning of programming by engaging
students in competitions during which their programs will be
evaluated against one another in an arena of sorts. These two
different, and somewhat antagonistic, approaches to raise
students’ motivation level inspired us to revisit the pair

programming fundamental idea and twist it to introduce a
competitive dynamics. Our early experience with Robocode
indicated that such approaches have the potential to motivate
students to focus too much on the final result (i.e. a tank which
can “blast its way” to victory) rather than the programming
process. In a typical AI course, this effect would manifest
through the fact that the code winning the competition would be
a better illustration of how human can “play the system” rather
than a solid implementation of one of the artificial intelligence
approaches discussed in the lecture. In the context of a first
programming course, it would be most likely the code quality
which would suffer from the imperative necessity to win.
Interestingly enough, Ken Schwaber stressed out that sacrificing
code quality is almost a “second nature”, an instinct for
developers caught in a goal-driven, pressured productivity
environment [20]. Obviously, we might want to steer away from
nurturing such reflex in beginning programmers.

Going a little further
How can we introduce a competitive learning drive along with

pair programming while avoiding such an educational pitfall?
Our suggestion is to switch the focus from the end results (e.g.
“my code is ready before yours”) to the process and more
specifically to code correctness. This allows the instructor to
introduce the notion of test harness and have students start, from
the very beginning of the course, to appropriately test the code
they produce. As mentioned in [12] this is not a goal which
importance should be underestimated.

We tested, in the previously mentioned courses, a variant of
the pair programming activity based on test-driven practices.
We asked two students to start by both developing
independently a solution to the same assignment. Once their
solutions were coded, we introduced the idea of test harness to
them by asking them to verify how their code functioned with a
diversified set of inputs. After this second step, they were
required to team up with their neighbor, exchange seats and
start working on testing their classmate’s code. Our goal is to
lead students to start thinking during the development phase in
terms of “how would my code react to this input?” and “what is
a programmer most likely to overlook in this method?”. The
evolution of CS1 programming courses contents indicates that
programming is now perceived as an activity that goes beyond
the mere writing of code but requires many skills. Designing,
implementing, testing and debugging are all examples of the
programmers’ skill set. The activity we propose in this section
helps sharpening multiple skills of this set without focusing
only on the purely implementation-focused ones.

This switch of the competitive focus away from the resulting
code’s efficiency and more toward its correctness is extremely
valuable, from a pedagogical standpoint, for early programming
courses. It is also similar to the way instructor or student-led
live coding contributed to aligning what is taught and the way it
is taught with the expected outcomes of a programming course:
teaching students how to program.

Implementation and best practices
Our objective was to leverage test-driven development to

introduce beginning programming students as early as possible
to the concept of test harness and engage them in a competitive
activity to further motivate the development of a different
attitude toward coding which we might define as “defensive
coding”. This attitude is meant to enable a developer to code
while thinking in terms of code testing. We didn’t aim at

making students think in terms of test-driven development per
se but rather at re-enforcing good programming practices from
the get go. For this reason, we used the Raptor flowchart
interpreter [1, 2, 3] in both above-mentioned courses. In
cop2510 we used it for about 3 weeks prior to a BlueJ-based
object first approach. In cop3515, we used it for only 1 week
and a half as a refresher and review material. Raptor allowed us
to spare our students the learning of a specific syntax during the
first weeks but instead focus on developing solid control flow
design skills. In this specific context, we developed the
assignment presented below.

Assignment example
This exercise has been adapted from one of Nick Parlante’s

Javabat applets available at http://javabat.com/:
The squirrels in Palo Alto spend most of the day playing. In

particular, they play if the temperature is between 60 and 90
(inclusive). Unless it is summer, then the upper limit is 100
instead of 90.

Using raptor, write a flowchart which is going to ask the user
to provide a temperature value (between 0 and 130) and a
number summer which will be equal to 0 or 1. Depending on
the values that were passed to you by the user, you will
determine whether the squirrels are playing or not and display
on the screen an appropriate string.

This first step was followed by an individual code testing;

Make sure you test extensively your program. This time you

will write down the tests you have been performing on paper as
follows:

A table was provided for students to design and then record

their testing experiments.
Value for

TEMP
Value for

SUMMER
Expected
outcome

Observed
outcome

Finally, the next exercise extended the testing to the
neighbor’s code. At this point the objective was clearly to attack
each other’s code through the test harness in order to “prove” it
wrong and make your own code look better. Good corporate
practice altogether, isn’t it?

Now that you developed both a flowchart and a series of test
cases to make sure your program works, exchange seats with
your neighbor and run your tests on their program. Try to find
tests which will prove their code wrong, keep track of these
results and show them to your classmate once you think you
can’t find more bugs in their code for them to fix it.

Discussion
Regardless of the students’ preliminary programming

experience, this activity allowed them to play both the
developer and observer roles on each assignment rather than
taking turn. This might be beneficial when trying to introduce
testing at such an early stage in so far that students don’t have to
understand and adapt to a role description. More importantly,
this assignment introduced the testing mindset as a competitive
game which is more likely to motivate students and which we
hope will help them develop a solid programming thought
process which will address the issues stressed out in [12].

4. DISCUSSION & FUTURE WORK

This paper discussed two active learning techniques
appropriate for introductory programming courses. The first one
enhances the practice of student-led live doing by employing a
particular type of assignment. We discussed the benefits of this
approach in terms of its connection to the constructive
alignment theory and, more generally speaking, in terms of
constructivism and active learning. The second revisits the pair
programming pedagogy and leverages competitive learning in a
code quality focused context by using test-driven development
methodologies.

Our future work will be concerned with evaluating
quantitatively the impact of the above-mentioned approaches.
As of the writing of this paper, we are still in the process of
collecting anonymous feedback from our students and hope to
be able to include early evaluations in the final manuscript.
After this first evaluation, we will refine our surveying tool in
order to focus more carefully on the strengths and weaknesses
of these approaches as identified by students.

Our next step will then be to work on scaling up these results;
like many active learning activities, ours were successful in a
small size classroom context but will need further work if they
are to scale up to larger groups of students. The activities
themselves and the very idea of student-led live coding might
have to be revisited from the perspective of groups of students
working together instead.

5. ACKNOWLEDGEMENT
The authors would like to thank the cop3515 students for their
participation in the students-led live coding activities and the
original designs they produced during these sessions which have
been used to illustrate this type of activity in this paper.

6. REFERENCES

[1] M.C. Carlisle, T.A. Wilson, J. W. Humphries, S.N.

Hadfield, “Raptor: a visual programming environment for
teaching algorithmic problem solving”, Proceedings of the
36th SIGCSE technical symposium on Computer science
education, St Louis, Missouri, USA, 2005, pp. 176-180

[2] Martin C. Carlisle, Terry A. Wilson, Jeffrey W.
Humphries, Steven M. Hadfield, “Raptor: introducing
programming to non-majors with flowcharts”, April 2004,
Journal of Computing Sciences in Colleges, Vol.19 Issue 4

[3] J. C. Giordano, M. Carlisle, “Tools and systems: Toward a
more effective visualization tool to teach novice
programmers, October 2006, Proceedings of the 7th
conference on Information technology education SIGITE

[4] M. Kolling, B. Quig, A. Patterson, J. Rosenberg, “The
BlueJ system and its pedagogy”, Journal of Computer
Science Education, special issue on learning and teaching
object technology, vol 13, no 4, 12/2003

[5] A. Gaspar, A. Ejnioui, N. Boyer, “The role of the C
language in modern computing curricula", in preparation

[6] M. Hailperin, SIGCSE-members mailing list, posts #34
and #37, July 10th 2006, accessed on 2/22.2007 at
http://listserv.acm.org/archives/sigcse-members.html

[7] R.M. Felder, “It goes without saying”, Chem. Engr.
Education, 25(3), 132-133 (Summer 1991), accessed

2/22/2007 at http://www.ncsu.edu/felder-
public/Papers/Education_Papers.html

[8] M. Kolling, D.J. Barnes, “Enhancing apprentice-based
learning of Java”, 35th SIGCSE technical symposium on
computer science education, 2004, pp. 286-290

[9] O. Astrachan, D. Reed, “AAA and CS 1: The Applied
Apprenticeship Approach to CS 1”, Proceedings of
SIGCSE, 1995

[10] R. Anderson, R.Anderson, O. Chung, K. M. Davis, P.
Davis, C. Prince, V. Razmov and B. Simon, “Classroom
Presenter – A classroom interaction system for active and
collaborative learning, workshop on the impact of pen
technologies on education”, 2006

[11] Bluej SSH access plugin, http://www.bluej.org/
[12] Yifat Ben-David Kolikant, “Students' alternative standards

for correctness”, Proceedings of the 2005 international
workshop on Computing education research ICER '05

[13] J. Biggs, “Teaching for Quality Learning at University”,
Buckingham: Open University Press/McGraw Hill
Educational, 1999, 2003.

[14] N. Nagappan, L. Williams, M. Ferzli, E. Wiebe, K. Yang,
C. Miller, S. Balik, “Improving the CS1 experience with
pair programming”, January 2003, Proceedings of the 34th
SIGCSE technical symposium on Computer science
education SIGCSE '03, Volume 35 Issue 1

[15] C. McDowell, B. Hanks, L. Werner, Experimenting with
pair programming in the classroom, June 2003, ACM
SIGCSE Bulletin , Proceedings of the 8th annual
conference on Innovation and technology in computer
science education ITiCSE '03, Volume 35 Issue 3

[16] J.S. Bruner, “The Process of Education”, Cambridge, MA,
Harvard university press, 1960

[17] R. Lister, B. Simon, E. Thompson, J. Whalley, C. Prasad,
“Not Seeing the Forest for the Trees: Novice Programmers
and the SOLO Taxonomy”, Innovation and Technology in
Computer Science Education (ITiCSE), 2006.

[18] J. Bennedsen, M.E. Caspersen, Revealing the
programming process, Proceedings of the 36th SIGCSE
technical symposium on Computer science education, St
Louis, Missouri, USA, 2005, pp. 186-190

[19] E. Frank Barry, Christopher C. Ellsworth, Barry L. Kurtz
and James T. Wilkes, “Teaching OO Methodology in a
project-driven CS-2 course”, Conference on Object
Oriented Programming Systems Languages and
Applications, 2005, pp. 338-343

[20] K. Schwaber, “Scrum et al”, Google tech 9/5/2006,
accessed 2/22/2007 at
http://video.google.com/videoplay?docid=-
7230144396191025011&q=google+tech+talks

[21] J. Biggs, K. Collis, “Evaluating the Quality of Learning:
The SOLO Taxonomy”, New York : Academic Press,
1982.

[22] Kevin Bierre, Phil Ventura, Andrew Phelps, Christopher
Egert, "Motivating OOP by blowing things up: an exercise
in cooperation and competition in an introductory java
programming course”, March 2006, Proceedings of the
37th SIGCSE technical symposium on Computer science
education

