
A Preliminary Review of Undergraduate Programming
Students’ Perspectives on Writing Tests, Working with

Others, & Using Peer Testing

Alessio Gaspar, Sarah Langevin
University of South Florida in Lakeland

3433 Winter Lake Road
Lakeland, FL 33803-9807

863-667-7088

alessio@usf.edu

Naomi Boyer
Polk State College
999 Ave. H. NE.

Winter Haven, Fl. 33881
863-298-6854

nboyer@polk.edu

Ralph Tindell
University of South Florida

4202 E. Fowler Avenue
Tampa, FL 33620

863-914-3032

rtindell@cse.usf.edu

CEReAL group – http://cereal.forest.usf.edu/

ABSTRACT
Techniques such as Pair Programming, or allowing students to
run their programs against a reference test harness, have
demonstrated their effectiveness in improving grades or retention
rates. This paper proposes to supplement the existing literature by
investigating students’ perceptions of the benefits of writing tests,
working with other students and using Peer Testing. Responses to
an online anonymous survey cast new light on the relation
between testing and programming and confirm previously
postulated limitations of collaborative approaches; i.e. the
unbalanced nature of contributions and lack of didactic
interactions in student groups. We then examine how Peer Testing
is perceived and discuss its relation to both collaboration and
test-based pedagogies.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – computer science education, curriculum.

General Terms
Measurement, Human Factors.

Keywords
Peer Testing, Novice Programmers, Programming Pedagogy.

1. INTRODUCTION
A significant body of literature exists on the benefits of having
novice programmers write tests; refer to [2][3] for examples.
Using testing principles to enable students to run their programs
against the instructor’s reference test harness has also proven
helpful [4][5]. Peer Testing, a variant in which students run their
programs against other students’ tests, has been less studied
[6][7]. This idea is based on the assumption, well-grounded in
educational theory, that students are more likely to be challenged
by tests that are within their zone of proximal development [13]
than by tests provided by the instructor. Previous work also
highlights the relation between Peer Testing and the introduction
of constructivism in pair programming activities [8][9][10][11].

This paper proposes to investigate in more details the specific
benefits to students of writing tests, working with others freely,
and using Peer Testing. To gain deeper insight, we identify
subpopulations of respondents characterized by their affinity for
writing tests or working with others. These subpopulations are
then compared to one another with respect to attitudes toward all
three learning activities.

The remainder of this paper is organized as follows. Section 2
provides background information on this study and details on our
methodology. Sections 3, 4 and 5, respectively, analyze students’
perspectives on using tests, working with others and using Peer
Testing. Section 6 discusses findings and future work.

2. BACKGROUND
This section establishes our study’s specifics in terms of the
survey population, material taught, and pedagogies used. We also
discuss the research methodology for collecting data.

2.1 Research Methodology
An anonymous online survey hosted on Survey Monkey was used
to gather students’ attitudes and perspectives. A link for the
survey was provided to students via announcement on the
Learning Management System (Blackboard).

Participation was optional but earned extra credit to reward
participants for their time. To keep the survey anonymous, a
“key” was provided on the last page of the survey. Students were
invited to email that key to their instructor for extra points. To
discourage students from providing random responses to get the
key, an option was available to obtain the key without responding
to the survey.

Most questions allowed respondents to provide feedback using
one of the following Likert scales:

- 5-point agreement Likert scale with labels “Strongly
Disagree”, “Disagree”, “Neutral”, “Agree”, “Strongly
Disagree”. Results are presented in terms of labels
“Agree” / “Neutral” / “Disagree” by aggregating
responses on the 2 first and 2 last labels of the original
scale. Sample questions: Q3, Q4, Q5, Q6, Q8, Q12,
Q13, Q14, Q15, Q16.

- 5-point frequency Likert scale with labels “Almost
Never”, “Seldom”, “Sometimes”, “Often”, “Most of the
time”. Responses were presented using labels “Rarely” /
“Sometimes” / “Often” by aggregating responses on the
two first and two last labels of the original scale.
Sample questions: Q9, Q10.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGITE’ 2013, October 11–13, 2013, Florida, USA.
Copyright 2013 ACM 978-1-4503-1464-0/12/10...$15.00.

- 3-point frequency Likert scale with labels “Often”,
“Sometimes”, “Never”. Sample question: Q7

In addition, average ratings were reported by assigning integer
values starting at 1 to each label.

2.2 Surveyed Population
The survey population consisted of junior standing
undergraduates, enrolled in IT Program Design during fall 2012.
A total of 30 students visited the survey page, 14 opted to obtain
the key without responding, 16 opted to answer the questions but
only 15 of them actually answered the questions.

IT Program Design is the 2nd programming course for IT majors.
To gain admittance, tudents must pass an introductory
programming class, which is often taught in Java with a focus on
a “fundamentals first”, as opposed to an “objects first” pedagogy.
IT Program Design focusses on three main learning outcomes.

First, it explicitly teaches the thought process used to deliver
programs from requirements. Many students learn in other courses
only to work with requirements that fully specify solutions in
plain English, which they then translate into Java.

Second, it introduces students to system-level concepts such as
execution stacks, pointers, memory allocation.

Third, it prepares students for upper-level system-oriented
offerings using the C language [12].

Topics covered map to [1]: fundamentals, functions, arrays,
pointers, strings, dynamic memory allocation, user-defined types
and elementary data structures. These topics are covered in 7
modules. The material, excluding graded assignments and
quizzes, is available at

http://cereal.forest.usf.edu/clue/progdesign/.

2.3 Pedagogy
IT Program Design is taught as an online asynchronous offering.
Students work on the various activities in each module on their
own schedule as long as they meet set deadlines.

Each module is two weeks long. The first week is devoted to
reading assignments; posting questions on forums; meeting on
Elluminate to get personalized help; working on apprenticeship
exercises; and watching step-by-step solution videos. The latter
are implementations of cognitive apprenticeship [8]. By the end of
the each module’s first week students take a graded quiz.

During the second week, students work on a mini project.
Detailed feedback is provided along with a “satisfactory or not”
evaluation, which earns students participation points.

IT Program Design’s main pedagogical innovations reside in its
use of apprenticeship exercises, testing and peer testing.

The topic of apprenticeship exercises is out of the scope of this
paper, but the reader is referred to [8][9][10][11] for details.
Writing a test harnesss is strongly encouraged for non-graded
practice assignments (PAs) and required in graded programming
assignments (GPAs). Originally, testing was introduced to help
address the problem of loss of intentionality in programming [10].
Peer Testing was used in all practice and graded assignments.

3. Perspectives on Testing
This section investigates students’ perspectives on writing tests
for their programs as part of learning to program.

3.1 Survey Questions
Our first question, Q2, focused on establishing the degree to
which students used tests out of compliance vs. genuinely
appreciating their benefits. The question was as follows:

Q2 Which of the following describes best your usage of tests this
past semester;

1. I wrote tests for all my programs, graded or not
2. I only wrote tests for graded programming

assignments, even when they didn't require it
3. I only wrote tests when the graded programming

assignments required it
Students selected one of the three available options. The first one
captures positive attitudes toward testing whereby the respondent
used tests in all the programs they wrote without external reward.
The second is meant to identify respondents who value testing
enough to leverage it in graded assignments but who may not see
the point in using it in every program they write. The last
statement is meant for respondents who only used tests in order
not to lose points. This question allowed us to identify two sub-
populations:

P1 Students who adopted testing in all their activities without need
for external rewards – Q2 response #1

P2 Students who used testing as compliance with mandatory
requirements – Q2 response #3

The next questions, Q3 / Q4 / Q5, evaluated the perceived
usefulness of using tests for, respectively, debugging programs,
understanding requirements and improving programming skills.

Q3 Designing tests helped me find errors in my programs.

Q4 Designing tests helped me better understand the requirements
for my programs

Q5 Designing tests helped me learn to program.

Students were invited to rate their agreement with the above
statements using a 5-points agreement Likert scale.

3.2 Observations
Table 1 summarizes responses to Q2. A single student adopted
testing only for graded assignments. The majority of others
adopted testing for all their programs; thus, suggesting its
perceived usefulness. This assessment is in line with other studies
on the positive impact of testing e.g. [2][3][4][5].

Table 1 – Q2

Response #
I wrote tests for all my programs, graded or not 9
I only wrote tests for graded programming
assignments, even when they didn't require it

1

I only wrote tests when the graded programming
assignments required it

5

Table 1 shows that the sizes of subpopulations P1 and P2 are,
respectively, N=9 and N=5. Table 2 shows the levels of
agreement of populations P0, P1 and P2 with questions Q3 to Q5.
A majority of respondents agreed to the three types of benefits.

Table 2 – Q3 to Q5

Question

P Disagree Neutral Agree Avg

Q3
P0
P1
P2

1
0
1

5
2
3

9
7
1

3.87
4.22
3.00

Q4
P0
P1
P2

3
0
3

4
2
2

8
7
0

3.60
4.22
2.40

Q5
P0
P1
P2

3
0
3

3
1
2

9
8
0

3.53
4.22
2.20

Looking at the average rating for P0 instead of the aggregated
responses suggests a marginally stronger agreement level for Q3,
with Q4 and then Q5. Benefits to students are most obvious as
they relate to finding bugs rather than understanding requirements
or even learning to program in general. P2 respondents follow the
same ranking while P1 respondents equally rate their agreement to
all three benefits.

Results suggest that students who do not find a benefit in writing
tests also only use tests when required to do so.

3.3 Discussions
The initial impression is that P2 students seem to be compliant
learners in so far as they used tests only when required to do so in
graded assignments. However, most compliant learners should
have seized the option described in section 2.3, which allowed
them to get the survey key without taking the survey.

It is therefore possible, in contradiction to the available literature
[2][3][4][5][9], that writing tests was perceived as genuinely
useless by P2 students. Table 2 shows that disagreement levels
for P2 respondents are non-uniform. The highest agreement level
for P2 was on that writing tests helped in finding bugs. Due to the
overall agreement, regardless of subpopulations, this outcome is
potentially one of the main agreed-upon benefits of writing tests.

Writing tests to formalize requirements was expected to be helpful
by triggering questions that would help students better understand
expectations. However, P2 responses suggest that representing
requirements in tests was not more helpful than simply
implementing them directly in the program. This contrasts the
educational benefits of writing tests with those observed by
software engineers for whom they represent a more objective
formalization of requirements.

Similarly, P2 students felt that writing tests did not help improve
programming skills in general. While testing undeniably yields
better quality software, the skills involved in writing tests are not
necessarily the same as those used in writing programs. As such,
tests might help students become better developers in the long
term without supporting in the short term their acquisition of more
elementary programming skills.

4. Perspective on Programming with others
This section establishes the attitude of our students regarding
working with others on programming tasks.

4.1 Survey Questions
The first question is meant to identify subpopulations based on
whether respondents worked with others.

Q7 Rate how often you've worked on programming tasks with other
students regardless of whether they were graded or non-graded;
e.g. programming assignments, group projects, exercises or
simply while participating in “study groups.”

Respondents were asked to answer the question two times:
“Before taking this course” and “During this course”. Each
response used a 3-point Frequency Likert scale. This question
allowed us to distinguish two sub-populations:

P3 Students who actually worked with other students during this
course; Q7 responses “Often” or “Sometimes”.

P4 Students who never worked with other students in this offering;
Q7 responses “Never”.

Question Q8 used a 5-point agreement Likert scale to measure
respondents’ perspectives on working with other students.

Q8 Rate your levels of agreement with the following statements.
Working with other students on programming tasks...

- …is more enjoyable than working alone

- ... is more beneficial to my grades than working
alone

- ... is more beneficial to improving my individual
programming skills than working alone

- ... is more beneficial to understanding how to apply
the lectures than working alone

Question Q9 used a 5-point frequency Likert scale to measure
how often students “take the lead” in terms of efforts or tutoring.

Q9 How "balanced" are the contributions of the other students
working with you?

- I end up contributing more toward the end result
than others

- I end up explaining more to others than they explain
to me

Q10 offered a list of activities for respondents to rate using the
same 5-point frequency Likert scale. These activities exemplified
leadership (1), responsibility (2), tutoring by explanations (3,4),
involvement in others’ work (5,6), tutoring by lecturing (7) and
constructivist tutoring (8). See Table 6 for activities list.

Q10 Rate how much of the following types of contributions you
provide when working with other students on programming
tasks <list of contributions follows – see Table 6 for details>

4.2 Observations
Table 3 suggests an increase in how often students worked with
others from previous semesters and this offering. It also
establishes the size of our subpopulations; P3 is N=9, P4 is N=6.

Table 3 – Q7

Responses Never Some
times

Often Avg

Before this offering 8 7 0 2.53
During this offering 6 5 4 2.13

Table 4 shows the response distribution for Q8. When looking at
all respondents, P0, students agreed in majority to all statements
with marginal differences. The average ratings show statements
#2 and #3 as being in the lead. The fact that students rated
identically the benefits to their grades and to the improvement of
their programming skills suggests they perceive both as
equivalent.

When comparing sub-populations P4 & P3 students from the
former have more pronounced disagreement / neutral feedback.

Table 4 – Q8

Responses P Disagree Neutral Agree Avg

1
…is more
enjoyable than
working alone

P0
P3
P4

2
0
2

5
2
3

8
7
1

3.47
4.11
2.50

2

... is more
beneficial to my
grades than
working alone

P0
P3
P4

2
0
2

4
1
3

9
8
1

3.60
4.22
2.67

3

... is more
beneficial to
improving my
individual
programming
skills than
working alone

P0
P3
P4

2
0
2

4
1
3

9
8
1

3.60
4.22
2.67

4

... is more
beneficial to
understanding
how to apply the
lectures than
working alone

P0
P3
P4

3
1
2

5
2
3

7
6
1

3.40
3.89
2.67

Table 5 shows Q9 responses. Most students rarely take the lead in
contributing and even more rarely in explaining to others. This

suggests that, as could be expected, regardless of whether students
work together in a balanced manner [9] their focus is not on
helping the other students but on completing the project.

Table 5 – Q9

Responses P Rarely Some
times

Often Avg

I end up contributing more
toward the end result than
others

P0
P3
P4

7
4
3

4
3
1

4
2
2

2.67

I end up explaining more
to others than they explain
to me

P0
P3
P4

8
5
3

3
2
2

4
2
1

2.53
2.44
2.67

Table 6 Q10 responses suggest that the majority of respondents
rarely engage in the activities we listed when working with others.

Table 6 – Q10

Statement P Rarely Some
times

Often Avg

1

Leading by
breaking down the
problem then
assigning tasks to
others & myself

P0
P3
P4

8
5
3

6
3
3

1
1
0

2.07
2.11
2.00

2

Implementing the
parts of the overall
project which were
assigned to me

P0
P3
P4

5
3
2

5
2
3

5
4
1

2.87
3.00
2.67

3

Explaining the
parts I
implemented to the
other students

P0
P3
P4

4
2
2

10
6
4

1
1
0

2.60
2.78
2.33

4

Explaining to other
students how to
implement their
parts

P0
P3
P4

7
4
3

7
4
3

1
1
0

2.27
2.33
2.17

5
Fixing bugs in
other students’
parts

P0
P3
P4

10
7
3

5
2
3

0
1.93
1.78
2.17

6
Explain their bugs
to other students

P0
P3
P4

9
6
3

6
3
3

0
2.07
2.00
2.17

7

Helping others
improve their
programming
skills by “lecturing
them” or providing
advice

P0
P3
P4

8
5
3

7
4
3

0 2.00

8

Helping others
improve their
programming
skills by
understanding
what their
misconceptions are
then providing
counter examples

P0
P3
P4

9
5
4

5
3
2

1
1
0

2.07
2.22
1.83

Let us look at these responses based on the attitudes they reflect;

Leadership (1) – This activity implies an ability or willingness to
organize programming tasks, whether alone or in a group. It was
rarely the focus of respondents, regardless of the population. This
is not surprising in so far that novice programmers should not be
expected to easily take on the role of “developer lead”.

Responsibility (2) – Regardless of the subpopulation considered,
respondents are split on how often they implement their own
parts. This suggests unbalanced contributions in teams.

Instructivist Tutoring (3,4,7) – While respondents were likely to
explain what they did to others (3), they were not frequently
involved in “explaining” to others how to do their work (4) and
even less in tutoring them (7). This suggests that, as was
hypothesized before [8][9], the primary goal of students working
together on programming projects is to complete the work rather
than to help each other improve skills.

Constructivist Tutoring (5,6,8) – Beyond the willingness or
ability to help other students, responses suggest an even less
frequent involvement in activities which require understanding a
partner’s mistakes or misconceptions. As partners in a project,
students probably perceive investing in understanding the work or
thoughts of others as a waste of their time. This is in contrast with
instructors’ constructivist beliefs that put such understanding of
students’ mistakes or previous knowledge at the forefront of
effective teaching.

4.3 Discussion
The consensus in computing education literature is that
collaboration among students, e.g. pair programming, is efficient
for individual skills development and retention [16]. However,
previous work led to hypothesizing that the nature of the student-
to-student interaction in such collaborations might be improved
[8][9]. More specifically, the unbalanced contributions of students
along with the lack of didactic dialog suggest that techniques such
as Peer Testing might be an improvement.

While professional programming teams often follow the mentor /
apprentice variant [3], each member has already proven his/her
ability to program individually. In students groups, differences in
skill levels are likely to be much more pronounced. Table 5
confirms that most students see themselves as infrequently
contributing more than others. Similarly, Table 6 shows, via
responses to item #2, that students are equally split in the
frequency they implement the tasks they were assigned.
Respondents reported working with others, i.e., P3, seem to report
implementing their assigned tasks more often than those who did
not work with others, i.e., P4.

Similarly, Table 6 item #1 suggests that few students, regardless
of subpopulation, frequently take the lead. This item also captures
the ability to break down the task at hand into smaller sub-
problems, which is not expected to be wide-spread among novice
programmers. These results are consistent with expectations.

Therefore, responses confirm that groups are based on unbalanced
contributions: some students contribute more often, others do so
sometimes, but the majority lack involvement.

Further, our data provide insight regarding the nature of the
didactic exchanges taking place inside such groups. Table 6
reveals that students are even less likely to offer educational help
to others than to contribute a fair amount of work. While a good
proportion of students are willing to explain, few are interested in
lecturing others and even fewer in getting involved with other
students’ work. This is in stark contrast with the computing
education researchers’ focus on constructivism vs. instructivism
[14][15]. Constructivism requires instructors to “get involved”
with students’ attempts, understand their misconceptions and
build on their previous knowledge, rather than simply state the
solution. When students work together, instructivism prevails,
thus limiting potential educational benefits.

Together, these observations confirm the two above-mentioned
hypotheses that motivated the design of Peer Testing [8][9]. The
next section will examine whether students’ perception of Peer

Testing is in alignment with its expected potential to address the
shortcomings confirmed in this section.

5. Perspectives on Peer Testing
This section explores students’ perspective on Peer Testing.

5.1 Surveys Questions
The first questions, Q12 / Q13 / Q14, were meant to explore how
Peer Testing supported students’ learning.

Q12 Being able to use my classmates’ tests helped me improve my
own tests.

Q13 Being able to use my classmates’ tests helped me improve my
own programs by identifying missing features in them.

Q14 Being able to use my classmates’ tests helped me improve my
own programs by finding errors in them.

The next question, Q15, inquired as to whether Peer Testing was
successful in allowing students to receive help from others while
still requiring them to understand and fix their own bugs.

Q15 Using classmates’ tests forced me to figure out my errors myself
instead of letting a classmate do it for me.

The next question, Q16, went one step further by asking whether
students saw this approach as more beneficial to improving their
skills than just having someone else fix their bugs.

Q16 This form of collaboration led me to develop my own
programming skills more than if I had only shared programs
directly with classmates.

The last question, Q17, was meant to capture whether the
students’ experience with Peer Testing was positive.

Q17 In your next programming-related offering would you like to be
offered the option to use peer testing again?

5.2 Observations
Table 7 summarizes responses for the various subpopulations
identified so far. We will focus on P0 first.

The questions aimed at establishing Peer Testing’s usefulness, i.e.,
Q12, Q13, Q14, feature high levels of agreement. This suggests
that students perceive benefits from exchanging tests with others
not only to improve their own tests, obviously, but also to
improve their programs. These perceived benefits are paired with
an overall positive experience as illustrated by a majority of
students expressing agreement to Q17.

Table 7 – Q12 to Q17with P0

Question P Disagree Neutral Agree Avg

Q12

P0
P1
P2
P3
P4

2
1
1
0
2

1
0
1
1
0

12
8
3
8
4

4.07
4.22
3.60
4.33
3.67

Q13

P0
P1
P2
P3
P4

3
1
2
1
2

0
0
0
0
0

12
8
3
8
4

3.93
4.11
3.40
4.22
3.50

Q14

P0
P1
P2
P3
P4

3
1
2
0
3

1
1
0
0
1

11
7
3
9
2

3.87
4.00
3.40
4.44
3.00

Q15

P0
P1
P2
P3
P4

3
2
1
1
2

2
0
2
1
1

10
7
2
7
3

3.73
3.78
3.40
4.00
3.33

Q16
P0
P1

3
1

5
3

7
5

3.40
3.56

P2
P3
P4

2
1
2

2
3
2

1
5
2

2.80
3.67
3.00

Q17

P0
P1
P2
P3
P4

0
0
0
0
0

5
2
3
2
3

10
7
1
7
3

n/a

However, students are a bit more divided regarding the idea that
Peer Testing is more beneficial than sharing programs; see Q16.

5.3 Relation to group work predisposition
Understanding the general perspective of respondents about
working with others is essential to making sense of their attitude
toward Peer Testing. Table 7 responses from students who
worked with others – P3 – and those who did not – P4 – show that
both subpopulations’ ratings result in a similar ranking of
questions. P4 students saw fewer benefits. Regarding their overall
experience, as measured by Q17, P4 students seem split between
being neutral and agreeing about whether they would like to use
Peer Testing in the future if given the option. The majority of P3
students responded positively. No student opposed being offered
the option to use peer testing again.

5.4 Relation to attitude toward testing
Table 7 shows responses from students who used testing – P1 –
along with those who only used it when required – P2. Students in
subpopulation P2 systematically agreed less to any of the potential
benefits. When ranking questions by average rating, both
subpopulations kept the same relative levels of agreement.

5.5 Discussion
Table 7 reveals that students’ feedback on the benefits of Peer
Testing is very positive across all subpopulations.

However, the lowest average agreement rating across all
subpopulations is that of question Q16. This suggests that students
do not see Peer Testing as better for improving their programming
skills than having other students look at their programs and
directly point out mistakes. The added requirement for students to
resolve their own bugs once they have been pointed out by their
peers’ tests is the most salient difference between Peer Testing
and a method like Pair Programming. There is insufficient data at
this point to assess whether the benefits of pair programming
regarding individual skill development are equivalent to those
achieved by peer testing [16]. Further study will be required to
determine whether this difference yields a better or worse impact.

Interestingly, students who did not work with others (P4) or didn’t
use tests when not required (P2) still supported the idea of using
Peer Testing again in Q17. This suggests that Peer Testing might
have the potential to affect further these students by:

- Allowing those who are not working with others, hence
not using traditional group work methods, to still
engage with their peers and benefit from it.

- Allowing those who are not using tests to be exposed to
the potential benefits of testing via other students’ tests.

6. DISCUSSION& FUTURE WORK
Because Peer Testing requires each student to write his or her own
tests, it yields the same potential benefits as other testing-focused
pedagogies. However, its originality lies in its ties to both
collaborative pedagogies, e.g. pair programming [16], and
situations where an instructor-provided test harness is available
for students to test their solutions [4][5].

The main difference between Peer Testing and having students
work together lies in limiting “help” to exchanging tests. This
allows students to receive help in identifying bugs while still
having to design and troubleshoot their own implementations.
While students acknowledged the usefulness of Peer Testing to
find bugs, they also communicated a preference for having other
students directly point out problems in their programs. From an
educator’s perspective, it is essential to go beyond preferences
that might be influenced by the fact that some students would
systematically opt for the easiest approach even though it might
fail to help them in developing more thoroughly their own skills.
Therefore, our next step will be to quantify whether Peer Testing
leads students to develop stronger individual programming skills
than, for instance, pair programming.

Peer Testing is very similar to having students run their programs
against the instructor’s reference test harnesses, as done with most
automatic grading systems. In both situations, students get
additional feedback on how close their programs are to fulfilling
requirements. However, Peer Testing provides students with tests
that should not be blindly trusted since they have been designed
by peers. We believe Peer Testing requires that students devote
more thought to understanding tests rather than simply using them
as an automatically produced check list. Therefore, while the
results of applying tests to a student program doesn’t provide
feedback on the programming process itself, it is less likely that a
student would be able to arbitrarily modify his or her program
until it pass the tests [8] when using Peer Testing rather than using
instructor tests. Establishing this requires further exploration
about how students make use of the results of tests in general, and
how they leverage the results of tests provided by an instructor
versus other students (peers). Qualitative research designs will be
explored to do so.

7. ACKNOWLEDGMENTS
This material is based in part upon work supported by the
National Science Foundation under award #0836863 Any
opinions, findings, and conclusions or recommendations
expressed in this publication are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

8. REFERENCES
[1] Deitel P., Deitel H.. C How to Program. 7/e.

Prentice Hall, 2012. ISBN-10: 0-13-299044-X

[2] Will Marrero and Amber Settle. 2005. Testing first:
emphasizing testing in early programming courses. SIGCSE
Bull. 37, 3 (June 2005), 4-8. DOI=10.1145/1151954.1067451

[3] Chetan Desai, David Janzen, and Kyle Savage. 2008. A
survey of evidence for test-driven development in academia.
SIGCSE Bull. 40, 2 (June 2008), 97-101.

[4] Stephen H. Edwards. Using software testing to move
students from trial-and-error to reflection-in-action. In Proc.
35th SIGCSE Technical Symp. Computer Science Education,
ACM, 2004, pp. 26-30.

[5] Stephen H. Edwards. Improving student performance by
evaluating how well students test their own programs.
Journal of Educational Resources in Computing, 3(3):1-24,
September 2003.

[6] M. H. Goldwasser, "A gimmick to integrate software testing
throughout the curriculum," presented at the Proceedings of
the 33rd SIGCSE Technical Symposium on Computer
Science Education, ACM, New York, NY, pp. 271-275, 2002

[7] S.H. Edwards, Z. Shams, M. Cogswell, and R.C. Senkbeil.
Running students’ software tests against each other’s code:
New life for an old "gimmick." In Proceedings of the 43rd
ACM Technical Symposium on Computer Science Education
(SIGCSE ’12), ACM, New York, NY, 2012, pp. 221-226.

[8] A. Gaspar, S. Langevin, N. Boyer. Constructivist
Apprenticeship through Antagonistic Programming
Activities, Encyclopedia of Information Science and
Technology, 2/e, 2007, Volume 2.

[9] A. Gaspar, S. Langevin. An Experience Report on Improving
Constructive Alignment in an Introduction to Programming.
Journal of Computing Sciences in Colleges, December 2012,
volume 28, issue 2, pp. 132-140

[10] A. Gaspar, S. Langevin. Restoring Coding with Intention in
Introductory Programming Courses, Proceedings of the
ACM Special Interest Group in IT Education Conference,
Oct 18-20, Sandestin, FL, 2007

[11] A. Gaspar, S. Langevin. Active learning in introductory
programming courses through student-led “live coding” and
test-driven pair programming, EISTA 2007, Education and
Information Systems, Technologies and Applications, July
12-15, Orlando, FL

[12] A. Gaspar, A. Ejnioui, N. Boyer. The Role of the C
Language in Modern Computing Curricula: Part 1 – survey
analysis, The Journal of Computing Sciences in Colleges,
Vol. 23 issue 2, pp. 120—127, CCSC Publisher (Consortium
for Computing Sciences in Colleges, USA), 2007

[13] Vygotsky, L.S. (1978). Mind and society: The development
of higher psychological processes. Cambridge, MA: Harvard
University Press.

[14] Tom Wulf. 2005. Constructivist approaches for teaching
computer programming. In Proceedings of the 6th conference
on Information technology education (SIGITE '05). ACM,
New York, NY, USA, 245-248.

[15] Andrew K Lui, Reggie Kwan, Maria Poon, and Yannie H. Y.
Cheung. 2004. Saving weak programming students: applying
constructivism in a first programming course. SIGCSE Bull.
36, 2 (June 2004), 72-76.

[16] Grant Braught, Tim Wahls, and L. Marlin Eby. 2011. The
Case for Pair Programming in the Computer Science
Classroom. Trans. Comput. Educ. 11, 1, Article 2 (February
2011), 21 pages.

