
102-A01 Let’s play with positive integers

Note about all the exercises in 103-Axx series
All the exercises in this series are going to be written as one big application spread over
several C files;

- main.c
 Will contain the main function of your program
 It will offer a text based menu to the user which will allow him or

her to call interactively each of the functions we will define below.
 The menu will list all functions with a number associated to them.
 The user will enter a choice as an integer and the main function

will then prompt the user for value for the parameters. It will then
call the function with the parameters.

- tools.c
 will contain the definitions of all the functions we will write in this

exercises series
- tools.h

 will contain the prototype of all these functions and will be
included from tools.c and main.c

- tests.c
 Will contain another main function.
 Unlike the one in the main.c file, this one is not meant to allow the

user to interactively call the functions we wrote but will rather call
them with pre-defined parameters value which we picked in order
to test them.

 We will compare the return values to make sure each call led to a
correct answer and, if this is not the case, we will display a
message on the screen.

 Please note that you won’t display anything at all if all calls are
correct. This is a way to allow us to compile our code, run it, and
see immediately if every test we designed so far was successful or
if one or more of these tests displayed error messages to help us
track down the bugs.

Obviously, we can’t compile together main.c and tests.c since that would mean our
application has two entry points. However, we can choose to compile our application
either with main.c or tests.c and therefore have an executable which allows us to
interactively call our functions or simply run a rudimentary test harness on them.

To compile your program in “interactive mode” use the following command line;

 GCC tools.c main.c

To compile your program in “automatic testing mode” use the following command line;

 GCC tools.c tests.c

In both cases, you don’t need to mention tools.h on the above command lines and you
will run your executable as you did with all previous codes;

 ./a.out

Work to do
- The main function in tests.c will be empty except for an include of tools.h.
- The file tools.c will contain only an include of tools.h.
- The file tools.h will be totally empty for now.
- The file main.c will include tools.h and contain the following code;

To get us started with this work, you will have to write the main for main.c so that it
displays a text-based menu as follows;

 Application Menu
 Let us consider x and y, two positive integers…

Current Values: X = 0 Y = 0
Do you want to:
 [1] Set new values for X and Y

[2] Compute the LCM of these two values
 [3] Compute the GCD of these two values
 [4] Compute x^y
 [0] Exit this application

 Your choice:

X and Y are two local variables of your main, initialized to zero. Their current value is
displayed each time you display the whole menu.

You will write a function in main.c to display the menu. This function will take the
variables X and Y as parameters to be able to display their current values on the screen.
This function will be called from inside the main function each time we need to display
the menu on the screen. It will have the following prototype;

 void display_menu (int xvalue , int yvalue);

In the main, you will keep displaying the menu and then prompt the user for a choice (an
integer). When the user selects 1, simply ask them new values for X and Y. When the user
selects 0, exit your loop and program. As long as the user selects an invalid value, just
display;

Invalid choice, please try again

and redisplay the whole menu. When the user selects a valid item, you will simply
display;

 Function not yet implemented

And then re-display the whole menu. Of course, later on, we will call the appropriate
functions but we didn’t write them yet.

Make sure you test your code so that it exits correctly, keep repeating the menu with an
error message when an invalid choice is made or after displaying the function not yet
implemented message when a correct entry is picked. Also make sure that you can use
option 1 to change the values of X and Y and that the new values are correctly displayed
when the menu is redisplayed. Write down your test harness.

Example(s)
n/a

Hints
 n/a

Testing
Input Output

Menu choice Expected Observed

