
Guidelines on

Designing Test Harnesses

Here are a few guidelines to help you improve the quality of your tests;

- Make sure you’re your resulting test suite is providing exhaustive coverage. His

means that every path of execution in your program needs to be executed during the
tests. E.g.

 The else part of a selection statements should not be the one always
executed in all your tests. That would prevent you from ever
knowing if the other part of the selection statement is buggy.

- For each path of execution, make sure that your tests are stressing enough to catch

as many possible implementation bugs as feasible. This means not only catching the
bugs you had or have in your own code but anticipating what might be a situation
which would fail another students’ solution. E.g. don’t forget to test “extreme cases”

 Enter a sentinel of -1 as the first grade in a grade-average program
and making sure there are no divisions by zero

 Provide input which prevents entering a loop at all
 Provide input which makes a program exhaust all tries it allows a

player

- Your suite of tests also needs to be minimal; avoid redundant tests which are not
bringing anything more. E.g.

 If you’re testing a program displaying the largest of two scanned
integers, it is useless to test both {42,99} and {5,9}.

 What matters is to test whether the program is able to find the largest
number when it is the first, the second, or when both are equal.

- Make sure you comment your tests to justify them; that will probably help you

eliminate redundancy and realize what you are not testing.

- You are not expected to perform robustness testing of your program vs. badly
formatted user input. E.g.

 If you program prompts the user for an integer value, you will not
have to test what happens if you enter text.

 We assume the user follows the directions provided by the program.

