
202-A01 Tracing programs which are using pointers

Work to do
You can do this exercise purely on paper, using and filling the table provided to you
below. Make sure that you also note if a given line would cause a bug and explain its
nature.

It is also a good idea to type this code and compile it then add to it a bunch of printf
statements to double check that your trace is actually correct. When you do so, you will
come up with questions (e.g. “I though it worked this way, why is the printf telling me
otherwise) which you can post on the course’s forums to get help with.

If you do not verify your trace by implementing the code you will probably leave errors
in it which you will commit again at our next exam. Warn be thee.

Here is the program you will have to trace;

#include <stdio.h>
int main ()
{
1. int array[5] = { 0,1,2,3,4} ;
2. int * p1, **p2 ;
3. int * parray[2] = { NULL , NULL };
4. p1= & array[2] ;
5. *p1 = 20 ;
6. p2 = & p1 ;
7. ** p2 = 30 ;
8. *p2 = NULL;
9. parray[0] = & array[0];
10. parray[1] = & **p2;
11. *parray[0] = 30 ;
12. *parray[1] = 300;
}

Use the table on next page to trace its execution line per line by hand.

Testing
Here are the variables you will have to trace and the memory addresses we are going to assume they are located at. These will come
handy when you assign the address of a variable to a pointer. You will be able to keep track of who points to who by filling in these
memory addresses as contents of your pointer variables.

 Variables
array p1 p2 parray

Memory Address 1000 1004 1008 1012 1016 1020 1024 1028 1032

The following table is when you will be tracing how values of each variable will change as the program executes

Value after
executing Line #

Variables values
array p1 p2 parray *parray

[0] [1] [2] [3] [4] p1 *p1 p2 *p2 **p2 [0] [1] [0] [1]
1
2
3
4
5
6
7
8
9
10
11
12

