
203-A01 More of the Handy Array Library

We are going to add functions to our Handy Arrays Library, using the files you already
developed in 201-A01 to A04.

 hal.h will contain the headers (aka declarations) of our functions.
 hal.c will contain the definitions of all the functions we will implement.
 tests.c will contain the main function used to test our functions.

Work to do
To start this project, let’s implement the following functions in hal.c;

 int* intarray_allocate (int size);
This function returns the address of a newly allocated dynamical array of size
integers or NULL if a size is negative or null or if malloc didn’t work.

 int intarray_deallocate (int * p);
This function will call free to deallocate the dynamical array pointed to by p.
Make sure that p doesn’t contains NULL since deallocating a NULL pointer
would be an issue. If the deallocation went fine, return 0, otherwise return -1.

 int intarray_deallocate_cleanly (int ** p);

This function will call the previous one on *p and then will make sure that *p is
assigned NULL to prevent from using it erroneously. It will be called by using the
address of a pointer on a dynamically allocated int array as effective parameter.
Use the same return value convention than above

 int* intarray_clone (int data[] , int size);
Allocates memory for a dynamical array of integers large enough to hold a copy
of data then copies int per int the contents of data into the newly allocated array
of integers and return its address or NULL if memory allocation didn’t work

 int* intarray_gather (int data1[], int size1, int data2[], int size2);
Allocates memory for a dynamical array of integers large enough to hold the
contents of both data1 and data2 then copies the contents of both arrays, one after
the other, in the newly allocated one and returns its address or NULL if the
allocation didn’t work.

 int* intarray_extract (int data[] , int start , int end);
Allocates memory for a dynamical array of size (end-start +1) and copies inside
the integers located between these indexes inside of data, you will then return the
address of the newly allocated data or NULL if the allocation didn’t work. You
will assume the caller never provides a value for end which is greater or equal to
the size of the array. You will also return NULL in the following cases;

 data is NULL
 start < 0
 (end < start)

Testing
 Update tests.c to ensure that your functions are working. More specifically, make

sure that you cover the error situations described above.
 Make also sure that you allocate a dynamical array and run it through all the tests

you performed with a regular array before.
 How would you test for the following common pointer-related errors?

 memory leaks?
 free twice the same reference?
 Dereference a NULL pointer
 Dereference an invalid pointer
 Any other pointer-related error you can think of?

