203-A02 More of the Handy String Library

We are going to add functions to our Handy String Library, using the files you already
developed in 202-A05. Make sure you write the following functions by using strings
features (e.g. end of string character) rather than attempting to reuse “as is” their
counterparts from the Handy Arrays Library.

e mystrings.h will contain the headers (aka declarations) of our functions.

e mystrings.c will contain the definitions of all the functions we will implement.

e tests.c will contain the main function used to test our functions.

Work to do

To start this project, let’s implement the following functions in mystrings.c;
e char *str_allocate (intsize) ;
= This function does the appropriate malloc to return the address of a
newly allocated array of size+1 characters (to account for the
additional \0’

e intstr_deallocate (char* s);
= This functions operates as its counterpart in A0l

e intstr_deallocate_cleanly(char* s);
= This function operates as its counterpart in A0l

e char *str_clone (char*s)
= allocates memory for a string to hold a copy of s
= then copies char per char (including “\0”) the contents of s into the
new string
= return its address or NULL if memory allocation didn’t work

e char* str_gather (char*sl, char*s2)
= measures s1 and s2 lengths
= allocate memory for a char * tmp to hold s1+s2
= copy the strings in it
= returns the address of this newly allocated string

e char* str_extract (char*sl, intstart, intend);
= allocates a new string of length (end-start +1)
= returns NULL if the allocation failed
= returns NULL if sl is NULL
= returns NULL if (end > str_length(sl) )
= returns NULL if (end < start)
= Then, copies in it the content of the string s1 located between
positions start and end.



Testing
Update tests.c to ensure that your functions are working (including in the error
cases outline above).

Make also sure that you allocate a dynamical string and run it through all the tests
you applied previously to static strings.

How would you test for the following common pointer-related errors?

memory leaks?

free twice the same reference?

Dereference a NULL pointer

Dereference an invalid pointer

Any other pointer-related error you can think of?



