
203-A02 More of the Handy String Library

We are going to add functions to our Handy String Library, using the files you already
developed in 202-A05. Make sure you write the following functions by using strings
features (e.g. end of string character) rather than attempting to reuse “as is” their
counterparts from the Handy Arrays Library.

 mystrings.h will contain the headers (aka declarations) of our functions.
 mystrings.c will contain the definitions of all the functions we will implement.
 tests.c will contain the main function used to test our functions.

Work to do
To start this project, let’s implement the following functions in mystrings.c;

 char * str_allocate (int size) ;
 This function does the appropriate malloc to return the address of a

newly allocated array of size+1 characters (to account for the
additional ‘\0’

 int str_deallocate (char* s);

 This functions operates as its counterpart in A01

 int str_deallocate_cleanly(char* s);
 This function operates as its counterpart in A01

 char * str_clone (char* s)
 allocates memory for a string to hold a copy of s
 then copies char per char (including ‘\0’) the contents of s into the

new string
 return its address or NULL if memory allocation didn’t work

 char* str_gather (char* s1 , char* s2)
 measures s1 and s2 lengths
 allocate memory for a char * tmp to hold s1+s2
 copy the strings in it
 returns the address of this newly allocated string

 char* str_extract (char* s1 , int start , int end);
 allocates a new string of length (end-start +1)
 returns NULL if the allocation failed
 returns NULL if s1 is NULL
 returns NULL if (end > str_length(s1))
 returns NULL if (end < start)
 Then, copies in it the content of the string s1 located between

positions start and end.

Testing
 Update tests.c to ensure that your functions are working (including in the error

cases outline above).
 Make also sure that you allocate a dynamical string and run it through all the tests

you applied previously to static strings.
 How would you test for the following common pointer-related errors?

 memory leaks?
 free twice the same reference?
 Dereference a NULL pointer
 Dereference an invalid pointer
 Any other pointer-related error you can think of?

