
203-A03 Enter the matrix

This exercise will allow you to review both pointers arithmetic, dynamical memory
allocation while also getting a glimpse at how multi-dimensional arrays are handled
internally by our programming language.

 thematrix.h will contain the headers (aka declarations) of our functions.
 thematrix.c will contain the definitions of all the functions we will implement.
 tests.c will contain the main function used to test our functions.

Architecting the Matrix
In our program, a dynamically allocated matrix of ROW by COL integers will be defined
as a memory zone large enough to hold ROW x COL x sizeof(int) bytes. While it is
convenient to visualize a matrix as a table, internally our elements will be arranged one
after the others, row after row as illustrated by the following diagrams.

(0,0) (0,1) (0,2)
(1,0) (1,1) (1,2)

This is the conceptual view of a 2x3 matrix, below is the representation in memory as a
series of contiguous integers.

(0,0) (0,1) (0,2) (1,0) (1,1) (1,2)

As you can see, the same information can be allocated linearly in memory. In order to
access element (x,y) we will need to do a little bit of pointer arithmetic though. Since all
rows are stored one after the other, the first thing to do is to compute the offset from the
start of the matrix in terms of complete rows;

(matrix start address) + x * (size of an entire row)

We can then add the offset corresponding of the position of our element inside this row;

(matrix start address) + x * (size of an entire row) + y * sizeof(int)

This allows us to manipulate a dynamically allocated matrix of integers as a int* and be
able to access any of its element by applying the above formula to this pointer.

Work to do
The following functions need to be implemented and tested;

int* thematrix_allocate (int nbRows, int nbColumns);

 Returns NULL if malloc didn’t work.
 Returns the address of a newly allocated dynamical integer array of nbRows x

nbColumns integers otherwise.

void thematrix_deallocate (int * data);
 Do not do anything if data is NULL
 Deallocates the dynamic memory pointed to by data otherwise

void thematrix_deallocate_cleanly (int** data);
 Same than above, plus assign *data to NULL thus preventing the pointer which

address was used as effective parameter to be dereferenced to the old allocated
address by mistake

void thematrix_display (int * data, int nbRows, int nbColumns);

 Display the contents of the integer matrix data

void thematrix_scan (int * data, int nbRows, int nbColumns);
 Display the contents of the integer matrix data

Testing
 Update tests.c to test your functions and make sure that all the error cases are

handled properly.

