
PA203 – Tiny Taurahe Translator

We would have troubles writing a program to actually translate English sentences in

into another natural language. Of course, if we make up the language and fake a

translation process, then things get suddenly easier.

This PA encourages you to leverage the available standard library functions instead of

re-implementing your own versions.

Files you will be working with

You will be provided with several files to get you started working on this assignment.

- You must not alter the file names, remove or add files to the project

- You must only modify the ones marked below with a yes in “Modify it?”

- You must not insert any comments or code in the tests.c file which, when read by

another student, would give them any insights about the solutions you

implemented in tools.c.

Important Academic Honesty Note;

The role of tests.c is to allow you to test your program to verify it adheres to

requirements. Your instructor might allow you to exchange this file, and this file

only, with other students. Therefore, you must uphold academic honesty standards

by not inserting any information, besides the tests, which would divulge your

design or implementation of the solutions to another student. Failure to do so will

earn you a FF for the offering.

Here are the files;

File name Modify it? Role

tools.c Yes Implementation of your solution to the assignment

tests.c Yes Implementation of your test functions

tools.h No Header file for tools.c

main.c No Implementation of the main function starting your tests

testlib.h No Definition of the TEST function you must use in your tests

testlib.c No Implementation of the above

Task #1 –Implementing and testing taurahize_word

The first function we need to implement in tools.c is the one which, given a string

parameter with an English word, will return a newly allocated string containing its

translation in “Taurahe”. Its prototype is as follows;

char* taurahize_word(const char * const word);

The translation process is pretty straightforward; we are measuring the length of the

word which was passed as parameter, assuming it uses the whole string to make things

simpler, and we look up in a table to see what all words of this length translate into.

letters in

word

Taurahe

Translation

letters in

word

Taurahe Translation

0 “” 8 “Akiticha”

1 “A” 9 “Echeyakee”

2 “Ba” 10 “Awakahnahe”

3 “Aki” 11 “Aloakihshne”

4 “Aoke” 12 “Awakeekieloh”

5 “Aehok” 13 “Ishnehawahalo”

6 “Aloaki” 14 “Awakeeahmenalo”

7 “Ishnelo” 15 “Ishnehalohporah”

This “translation table” will have to be a static array of strings inside your function. At

index i, ranging from 0 to 15, we will have a string representing our “translation” in

Taurahe of all English words of length i.

Translating means measuring the length of word, looking up the Taurahe word in the

table and returning a new copy of it obtained with strdup. Attempting to translate a word

longer than 15 characters will result in the function returning a copy of “#@%” which is

Taurahe for “whatever, man”.

Task#2 – Implementing and testing taurahize_phrase

Now that we know how to “Taurahize” one word at a time, let’s translate entire phrases!

Here is the prototype of this new function;

char* taurahize_phrase(const char * const phrase);

This new function will start by measuring the length of the string to translate and

allocate dynamically a string of same length. The address of this “translation buffer” will

be stored in a translation pointer and will be initialized to have a ‘\0’ as first character. It

will be used to build, step by step, the translation of the whole string that was given to us.

We will then use strdup to make a duplicate of the string to translate. This “working

copy” will be passed to the strtok function in order to extract all its words one by one.

We will assume that only the space character ‘ ‘ is used as a delimiter between words.

Each word will then be passed to taurahize_word so that we obtain a new string

representing its translation. Each of these will be appended, using strcat, to our

translation. Keep at least a space between each word in translation. However, it’s fine

if we have just a single space between translated words even if the original string had

multiple spaces between words. We don’t guarantee that we keep the spacing as it

originally was during our translation process since it doesn’t alter the “meaning” of the

translation.

Now, make sure you return the address of your translation translation and de-allocate

any memory you don’t need. This includes the words returned by strtok. However, you

need to really understand how strtok works so that you are able to de-allocate these

properly. Do not de-allocate the string you plan on returning!

