
Role of the C language in Current Computing Curricula
Part 1 – Survey Analysis

Alessio Gaspar,
Alessio@lakeland.usf.edu

University of South Florida Lakeland
3433 Winter Lake Rd, Lakeland 33803, Fl, USA

 Abdel Ejnioui

aejnioui@lakeland.usf.edu
University of South Florida Lakeland

3433 Winter Lake Rd, Lakeland 33803, Fl, USA

 Naomi Boyer
nboyer@lakeland.usf.edu

University of South Florida Lakeland
3433 Winter Lake Rd, Lakeland 33803, Fl, USA

Role of the C language in Current Computing Curricula
Part 1 – Survey Analysis

Abstract
In December 2006, an anonymous online survey was publicized on the various ACM mailing lists

(SIGCSE, SIGITE). Its purpose was to determine the role of the C language in the various modern
computing curricula (CS, IT…). This paper summarizes the results and stresses out the quantitative usage
of this language in introductory and intermediate programming courses as well as in upper-level
undergraduate courses (e.g. operating systems). We also present the qualitative reasons provided by our
respondents for, or against, the adoption of the C language in these various courses. We then discuss these
results and propose an analysis of when the C language might be most useful in the curriculum, how it
should be introduced and what specific topics should be covered in such a re-designed “intermediate
programming in C” course.

1. Introduction
From a technical and historical perspective, the impact of the C language on computing

disciplines is not one to be overlooked easily. However, from a pedagogical perspective,
C has never been perceived as a language of choice for introducing students to
programming. While other popular educational and professional languages, such as Java,
also have significant pedagogical issues [1], the computing education communities have
invested significant efforts in developing suitable environments for students to learn with
[2, 3, 4, 5, 9, 10]. Such efforts are clearly few on the C front [8, 11] for which the
computing education community seems pretty much to have given up. This observation
prompts two questions; can we facilitate the learning of C through use of appropriate
IDEs or pedagogies and can we leverage C’s characteristics in another niche than
introductory programming?

The following sections will focus on presenting observations resulting from analyzing
the data of our online survey. Section #2 will focus on introducing the survey and
analyzing the respondents’ profile in order to flesh out some context in which to interpret
the observations. Section #3 will present observations related to the choice of
programming languages expressed by the respondents as far as introductory or
intermediate programming courses as well as upper-level undergraduate courses of the
curriculum. Sections #4 and #5 will respectively review the arguments against or in favor
of the adoption of the C language in the above-mentioned levels. Section #6 will
conclude by reviewing how C is used in upper-level courses. This paper will be
continued in its second part which will analyze further the observations detailed herein.

2. Survey & participants description
The objective of this study is to assess the role played by the C programming language

in the modern computing curricula (CS, IT, CE, CIS…) in higher education.
Specifically, our focus is on evaluating its usage from two complementary perspectives: a
quantitative review of the number of instructors using it as well as qualitative perspective
identifying its weaknesses and strengths. The use of C is explored at three different
levels: introductory programming courses (e.g. CS-1), intermediate programming courses
(e.g. CS-2 and above) and other upper-level undergraduate courses of the curriculum (e.g.

operating systems and networking, etc.). The findings go beyond the expected rejection
of C as a language for beginners in order to identify its useful and active niches. We used
an anonymous online survey to collect quantitative and qualitative data. Questions were
designed to explore the pros and cons of C in each specific course level as well as to
evaluate qualitatively the key language features. This analysis was used to identify the
technical reasons for accepting or rejecting C and discuss whether they could be
addressed by pedagogical or technological solutions. The survey was posted online using
surveymonkey.com and included 4 parts: general information, usage of C in introductory
programming courses, in intermediate ones, in upper-level undergraduate ones. Calls for
participation were posted on both ACM’s special interest groups in computer science
education (SIGCSE) and information technology education (SIGITE) mailing lists. After
two weeks, we had 97 respondents representing the following disciplines (multiple
choices allowed); 90.6% Computer Science, 9.4% Information Technology, 4.2%
Computer Engineering and 5.2% Computer Information Systems. In addition, 2.1%
selected “Software Engineering” and “Computational Science” as “other”. Concerning
institutional profiles, 47.4% indicated being in an undergraduate + graduate university,
43.2% in an undergraduate only institutions and 4.2% in a community college. These
numbers were instrumental in understanding the context of the survey’s findings which
were also influenced by the demographics of both SIGCSE and SIGITE mailing lists.
Most responses were received shortly after the SIGCSE announcement and before the
SIGITE one thus making results mostly CS-centric.

3. Programming languages choices
The second and third parts of the survey focused respectively on the usage of the C

language in introductory and intermediate programming courses. Our survey also
inquired about the languages used in upper-level undergraduate courses (e.g. operating
systems, networking, software engineering, etc). For each course level, respondents were
allowed multiple choices among 12 languages and an “other” category (c.f. Table 1).

Introductory courses Intermediate courses Other courses

Respondents Respondents Respondents Language
% # % # % #

Java 72.0 67 73.9 68 82.4 75
C 14.0 13 10.9 10 67.0 61
C++ 9.7 9 32.6 30 69.2 63
Python 4.3 4 5.4 5 20.9 19
Visual Basic 4.3 4 2.2 2 9.9 9
C# 3.2 3 5.4 5 15.4 14

Please refer to [25] for full list of languages
Others 10.8 10 4.30 4 20.9 19
Respondents Total 93 92 91

Table 1: Languages used in introductory and intermediate programming courses.

The response rate for this question was high; out of 97 respondents, 93 responded about

introductory courses, 92 about intermediate ones, and 91 for other upper-level ones. The
results revealed that Java dominates at all course levels (from 72% to 82.4%). This is
consistent with its popularity among instructors and professionals alike and is also linked

to the rise of the object-first approach [1]. In contrast, the C language only came as a
distant second choice in introductory courses (14%), a third choice for intermediate ones
(10.9%) and a third choice in the rest of the curriculum (67% for C, 69.2% for C++, 82.4
for Java). C is clearly perceived as necessary for some upper-level courses, but not as a
language for beginners. This rejection can be also seen as influenced by the nation-wide
decline of enrollment in computing curricula which caused the computing education
communities to develop environments dedicated to CS-1 [2, 3, 4, 5] along with
innovative pedagogies relying on higher level languages. These CS-1 approaches are as
far from C as can be; they are meant to be visually attractive, pleasing to the beginning
student in order to attract a larger population of students to the computing field.

Among the languages mentioned in the “other” category, most are functional: Lisp,
Haskell, ML and Scheme (5 mentions at introductory level, 6 in other courses).

4. Rejection of the C language

The survey solicited qualitative justifications of why C was not used in introductory and
intermediate programming courses by using both multiple choices and an open question.
The results (cf. table 2) clearly identify the lack of object oriented features as the most
important reason to reject C in both introductory (72.6%) and intermediate (79.7%)
programming courses. This concern even took precedence over technical reasons; pointer
arithmetic detracted instructors from using C in introductory (42.9%) courses rather than
intermediate ones (27.8%) while explicit memory allocation was more heavily criticized
at both levels (46.4% introductory vs. 34.2% intermediate). The results also revealed that
the C syntax is no longer perceived as a pedagogical hindrance with the exception of a
small number of respondents (14.3% introductory vs. 7.6% intermediate). This contrasts
with previous work [7] but can be explained by the adoption of other C-like languages
(C++, C#, Java). For completeness, an “other” category allowed participants to provide
alternative reasons for not using C in introductory and intermediate programming courses
[6]. The following themes emerged from these responses.

Impact of C Features on Pedagogy; The responses overwhelmingly criticized C for its
lack of object oriented features. However, other critics were formulated concerning the
lack of real type safety, the lack of a proper string data type, poor runtime error detection
and reporting, and awkward I/O. These shortcomings translate into pedagogical

Introductory
Courses

Intermediate
Courses

Respondent
s Respondents Negative Qualities of the C Language

% # % #
Lack of object-oriented features 72.6 61 79.7 63
Difficulties related to explicit memory allocation 46.4 39 34.2 27
Difficulties related to pointers arithmetic 42.9 36 27.8 22
Other (please specify) 40.5 34 38.0 30
Unsuitability of the general syntax (if, for, curly

braces...) although compatible with other language 14.3 12 7.6 6
Variables declaration syntax (right-left reading) 6.0 5 2.5 2
Respondents Total 84 79

Table 2: Reasons for not using the C language.

difficulties which all revolve around the idea that C is too much of a “low level” language
which exposes students to intricate topics which distract them from problem-solving and
zero-defect programming skills. Along this theme, two specific comments stand out: “far
too complex for our students” and “C is a cruel thing to inflict on beginners”.

The “Java Bandwagon”; one of the respondents coined up this term to describe the
position of others on the Java adoption issue. This theme emerged from responses which
stressed the need to use Java because it has become an educational or industrial standard
without need for further technical or pedagogical justification. Variants included the need
to be “compatible” with other universities or AP exams, to easily accommodate transfer
students. Java might have reached a critical mass turning it into the de facto language for
programming education, however, it now shadows alternatives such as Scheme or Python
which have been argued to be better suited for the task, given the complexity of Java [1].
As the survey revealed, these alternative are in use by a minority of participants only.

5. Adoption of the C language
In order to help us identify aspects of C which are inappropriate for beginners but worth

teaching to intermediate students, we used very similar wording in the questions
prompting the respondents for reasons for which they are using the C language.

Introductory

courses
Intermediate

Courses
Respondents Respondents

Positive Qualities of the C language

% # % #
C is used in advanced courses to which students need

to be prepared for 50.0 10 41.1 8
C exposes low-level concepts (stack, variable

allocations classes...) useful in other courses 45.0 9 64.7 11
Lack of Object Oriented features allows for a better

focus on fundamentals 40.0 8 5.9 1
General Syntax is compatible with other languages 35.0 7 23.5 4
Pointers / Explicit memory management teach

students about useful low level concepts 30.0 6 58.8 10
C helps students acquire a strong programming

discipline 30.0 6 5.9 1
C serves as a selection tool to identify strong

candidates to enter your curriculum 0.0 0 11.8 2
Other (please specify) 40.0 8 35.3 6
Respondents Total 20 17

Table 3: Reasons for using the C language.

Because C is not used by many participants in their programming courses, the total

number of respondents for this question has been low for both introductory (20
respondents) and intermediate (17 respondents) courses (c.f. Table 3). At introductory
level, the faculty who responded to these questions clearly indicated that the lack of
object oriented features and the necessity to understand low level programming concepts
were actually desirable for intermediate-level programming courses. This makes sense in
so far that about half of the respondents (50%, 41.1%) indicated that they were using the
C language because it is pre-requisite to upper-level courses of their curriculum.

C is being used and adopted in intermediate courses to prepare students for more
advanced coursework (41.1%). However, its potential for exposing students to both
pointers (58.8%) and low-level programming concepts (64.7%) takes precedence.
Interestingly, these results indicate how the very aspects of C which are perceived as a
pedagogical hindrance in introductory courses can be useful to provide a more in-depth
understanding of programming at later stages of student education. Although small in
numbers at the moment, some educators recognize the acquisition of these peculiar
aspects of the C language as an integral part of their curricular teaching approach. As of
responses in the “other” category, the following themes emerged:

Curricular Needs; In support of the figures from Table 3, a comment by a respondent
indicated that C was used in CS-3 to prepare students for courses such as operating
systems, computer architecture, and networking. C has also been noted to be used in
computer organization courses or special sections in which it plays a role very similar to
assembly languages a decade ago. These comments further support the finding of a
restricted niche of educators who deem the C language suitable for some specific topics.

Industry Needs; The second emergent underlines the fact that some institutions feel the
need to cover C in their curriculum due to its presence in some industries such as
embedded systems, security, and computer engineering and device-level development.

6. C in other courses
Previous parts of this survey focused on introductory and intermediate programming

courses. The last part was designed to evaluate the use of C in other courses of the
curriculum. While the previous findings indicated that C is appropriate in system-level
courses, the following results show, which courses are using C as a pre-requisite.

Table 4 clearly indicates that 28.6% of our
respondents do not use C in any other
course. The remaining respondents use C in
operating systems (51.6%), networking
(24.2%) and computer organization (16.5%).
The “other” category (26.4%) revealed that
C was also used in compilers, embedded
systems, and mainly in Unix system
programming courses. To probe further,
participants were invited to provide reasons
for which they adopted C in these courses as
a list of up to nine items. Analysis revealed

that these responses can be divided into the five categories appearing in table 5. In order
to weigh their relative consequence, each response comment was assigned to one of these
categories and its importance weighted with a researcher designed point system. Each
time a response from the first line was attributed to a category, the latter was awarded
seven points. When a response was cited as second within a category, six points were
awarded to the response. This was repeated until responses given as fourth choice or
below were reached. Since the numbers for the latter were low, they were lumped
together. Table 5 shows the resulting categories and their global weight.

Respondents
Other courses using C % #
Operating systems 51.6 47
Networking 24.2 22
Computer organization 16.5 15
Data structures 6.6 6
Software engineering 1.1 1
None 28.6 26
Others (please specify) 26.4 24
Respondents 91
Table 4: C in the rest of the curriculum.

Detail Weight Feedback Category Global
Weight 7 6 5 4,3,2,1

The figures in Table 5
indicates that most
comments support the
findings mentioned
above to the extent that
operating systems and
system programming
courses are the primary

courses using C, with architecture courses coming as second. The responses also
illustrate that a significant number of adoptions are motivated by either specific qualities
of the language or a justified need for exposure to programming in C for some curricula.
Specifically, this need for exposure is motivated by various considerations such as
providing students with experience on a diverse set of languages throughout the
curriculum, historical ties to the Unix operating systems, prevalence in some specific
industrial fields, and “reinforcement of students learning”. Several comments also
contributed to the results of Table 5 by indicating that C was used to be compatible with
existing tools.

7. References
[1] Roberts, E.; et al. The ACM Java Task Force: Final Report. 37th SIGCSE technical symposium on

Computer Science Education; Houston, Texas. ACM Press; 2006. pp. 131-2.
[2] Kolling, M., Quig, M., A. Patterson, J. Rosenberg, “The BlueJ system and its pedagogy”, Journal

of CS Education, special issue on learning and teaching object technology, vol 13, no 4, 12/2003
[3] Dann, W., Pausch, R., Alice: a 3-D tool for introductory programming concepts, Stephen Cooper,

Journal of Computing Sciences in Colleges , Proceedings of the fifth annual CCSC northeastern
conference on The journal of computing in small colleges CCSC '00, Volume 15 Issue 5, 2000

[4] Külling, M., Henriksen, P., Game programming in introductory courses with direct state
manipulation, June 2005, ACM SIGCSE Bulletin , Proceedings of the 10th annual SIGCSE
conference on Innovation and technology in computer science education ITiCSE '05, Vol. 37:3

[5] Guzdial , M., Use of collaborative multimedia in computer science classes, June 2001, ACM
SIGCSE Bulletin , Proceedings of the 6th annual conference on Innovation and technology in
computer science education ITiCSE '01, Volume 33 Issue 3

[6] Gaspar, A., Ejnioui, A., Boyer, N., Role of the C language in modern computing curricula, Survey
monkey results http://surveymonkey.com/DisplaySummary.asp?SID=3039744&Rnd=0.9342091

[7] Canning, J., Moloney, W., Rafyemehr, A., Rey, D., Reading types in C using the right left walk
method, June 2004, ACM SIGCSE Bulletin , Working group reports from ITiCSE on Innovation
and technology in computer science education ITiCSE-WGR '04, Volume 36 Issue 4

[8] Stephen, N., Freund, Roberts, E,S., Thetis: an ANSI C programming environment designed for
introductory use, March 1996, ACM SIGCSE Bulletin , Proceedings of the twenty-seventh
SIGCSE technical symposium on Computer science education SIGCSE '96, Volume 28 Issue 1

[9] Cross, J.H., jGRASP: an integrated development environment with visualizations for teaching
Java in CS1, CS2, and beyond, April 2006, Journal of CS in Colleges, Volume 21 Issue 4

[10] Allen, E., Cartwright, R., Stoler, B., DrJava: a lightweight pedagogic environment for Java,
February 2002, ACM SIGCSE Bulletin , Proceedings of the 33rd SIGCSE technical symposium
on Computer science education SIGCSE '02, Volume 34 Issue 1

[11] Demetrescu, C.; Finochi, I., Leonardo: A C programming environment for reversible execution
and software visualization. [Web Page] 1999; http://www.dis.uniroma1.it/~demetres/Leonardo/.
[Accessed Apr 2006].

Operating
systems/System
programming 185 21 2 4 1.0

Computer architecture 149 13 3 5 1.2
Technical aspects of C 112 9 4 4 2.0
Exposure to C 77 4 6 0 1.2
Other courses 53 5 3 0 1.2

Table 5: C in the rest of the curriculum.

