
More of the Handy String Library

We are going to add functions to our Handy String Library, using the files you already
developed in 202-A05. Make sure you write the following functions by using strings
features (e.g. end of string character) rather than attempting to reuse “as is” their
counterparts from the Handy Arrays Library.

 mystrings.h will contain the headers (aka declarations) of our functions.
 mystrings.c will contain the definitions of all the functions we will implement.
 tests.c will contain the main function used to test our functions.

Work to do
To start this project, let’s implement the following functions in mystrings.c;

 char * str_allocate (int size) ;
 This function does the appropriate malloc to return the address of a

newly allocated array of size+1 characters (to account for the
additional ‘\0’

 int str_deallocate (char* s);

 This functions operates as its counterpart in A01

 int str_deallocate_cleanly(char* s);
 This function operates as its counterpart in A01

 char * str_clone (char* s)
 allocates memory for a string to hold a copy of s
 then copies char per char (including ‘\0’) the contents of s into the

new string
 return its address or NULL if memory allocation didn’t work

 char* str_gather (char* s1 , char* s2)
 measures s1 and s2 lengths
 allocate memory for a char * tmp to hold s1+s2
 copy the strings in it
 returns the address of this newly allocated string

 char* str_extract (char* s1 , int start , int end);
 allocates a new string of length (end-start +1)
 returns NULL if the allocation failed
 returns NULL if s1 is NULL
 returns NULL if (end > str_length(s1))
 returns NULL if (end < start)
 Then, copies in it the content of the string s1 located between

positions start and end.

Testing
 Update tests.c to ensure that your functions are working (including in the error

cases outline above).
 Make also sure that you allocate a dynamical string and run it through all the tests

you applied previously to static strings.
 How would you test for the following common pointer-related errors?

 memory leaks?
 free twice the same reference?
 Dereference a NULL pointer
 Dereference an invalid pointer
 Any other pointer-related error you can think of?

