
Tokenizer Review Mini-Project

This exercise will allow you to leverage everything we covered so far to develop a
string tokenizer. Similarly to the strtok function from the standard library, we want to
build a function which will take a string containing several words separated by white
spaces or tabulations, then build and return an array of strings in which each entry is a
copy of one of the words in your original input.

We will, later in the semester, revisit this program and expand it so that we use these
tokens to do something useful but right now our main objective is to implement the
functions of this program so that we are capable to tokenize any string and display the
result on the screen.

Step #1: Implementation of the helper functions
Start by studying the source in the files main.c, tokenizer.h, and tokenizer.c. The latter

is the file in which the tokenizing function & its helpers are implemented.
Start by making sure the data structure to store these tokens is well understood by

studying the tokens_allocate and tokens_deallocate functions. You should then study the
implementation of the tokens_display function.

Step #2: the tokens_add function
Before to go any further, study the tokens_add function. Trace the execution of the

program from within the main to understand how it is being used.

Step #3: the tokenize function
This function implements the main functionality of this program and allows us to

identify words inside a string and call the tokens_add function to add each of these words
to our data structure containing all the tokens we identified.

Start by understanding its algorithm on paper and by working through it before to trace
the execution through the source.

To tokenize a string, you will need to analyze it character by character and keep track of
where a word starts (by the index of the first character of this word) and where it ends (by
the index of the last character of this word). Once you have those two indexes for a given
word, you can call the tokens_add function and then skip all the white spaces that follow
it until you find another non white-space character.

This can be achieved by using a variable (an int for instance) to keep track of what you
are looking for. Let’s say that we call this variable state and we assign to it the initial
value of 0, meaning that we start exploring the string looking for the first letter of a word.
Then we can enter a loop to iterate over all the characters of the string from index 0 to the
end. For each character, if we are in state 0, then we test if the character is alphanumeric.
If so, we assign its index to a variable start to remember where the word starts. We then
change our state, we are no longer looking for the first character of a word but the first
white space following one. Let’s assign the value 1 to state to represent this and then we
iterate again in our main loop to go look at what the next character is. The same way we
had a if statement testing, if we were in state 0, whether we encountered an
alphanumerical character, we need to also have a if statement testing, if we are in state 1,

whether we encounter a white space. If this is the case, then we mark this index by
storing it in a variable stop and call tokens_add.

This is not the full story but you should get enough hints from this to get you to
understand the implemented algorithm. Use the forums to post questions and get help
with this.

