
Return of the tokenizer

This review project will show you how we may leverage what we have learned since
the tokenizer program previously developed in order to modify it. We will start by
rewriting parts of the sources without adding or removing features in order to improve the
quality / flexibility / clarity. This is referred to as refactoring. Then we will start adding
features.

Step #1: Refactoring – Adding a Tokens data structure
You probably noticed that, when calling a function meant to work on our array of

tokens, it was fairly annoying to have to constantly specify the maximal number of
tokens (the size) along with the array of pointers itself.

Let’s define a simple structure struct tokens (and a typedef for it to be used as Tokens)
in the tokenizer.h file which will encapsulate both the dynamical array of pointers
(tokens) and its size (maxnbtokens).

struct tokens {
 char** tokens;
 int maxnbtokens;
};
typedef struct tokens Tokens;

The function tokens_allocate will now return a pointer on a newly allocated Tokens
structure. All the other functions will now work on a pointer on such a structure instead
of a char** parameter for the tokens and an int for the maximal number of tokens. We
also adapted our tests to these alterations.

void tokenize(Tokens* tokens, char * str, int length);
Tokens* tokens_allocate(int maxnbtokens);
void tokens_display(Tokens* tokens);
void tokens_deallocate(Tokens* tokens);

Also, it’s kind of silly to have to call tokenize with a user-provided string and its size,
we will just let tokenize figure out the size itself with strlen.

All these modifications are in the source provided as step 1. It is a reafactored version
of our previous mini tokinizer; i.e. no features have been added but the source quality has
been improved. When you run it, you will re-apply the same tests we used while
developing the first version. This process of re-applying a test-harness to ensure that we
didn’t degrade the correctness of the program is referred to as regression testing.

Step #2: Refactoring – Adding a Token data structure
Before we add a feature to this tokenizer, we are going to prepare the source by adding

a new data structure. By making sure that our program is still working with this new data
structure before to start adding features, we make it easy to improve our tokenizer in
small, controlled, increments. Using regression testing often after small, well-defined,
modifications is key to control the difficulty of a program.

So far, each token is simply a string which address is stored in the tokens array field in a
Tokens data structure. We want to go one step further and be able to not only store the
string representing the token but also an enumerate which will tell us what type of data
the token represents. Here are the new data types definitions we will be using;

enum token_type {INTEGER, FLOATING, OPERATOR, TEXT, NOTSET};
typedef enum token_type TokenType;

struct token {
 char* str;
 TokenType type;
};
typedef struct token Token;

struct tokens {
 Token** tokens;
 int maxnbtokens;
};
typedef struct tokens Tokens;

The source provided to you as step 2 will show how the functions were rewritten to
integrate the above modifications. The TokenType field of each Token data structure
should be set initially to NOTSET value. We will be using the same tests than before to
perform regression testing. However, we will also display the TokenType information to
make sure all tokens are appropriately set.

Step #3: Feature – Let’s start using this enumerate field
Let’s now revisit our program so that we actually make use of this TokenType field.

After the tokenize function is done identifying all the tokens in the user input, we are
going to call a function tokens_identify which will look at each token and update the
TokenType field with a value indicating what kind of data the string representing the
token contains. You will do so by invoking a token_identify function which works on a
single Token.

- void tokens_identify (Tokens* p);
- void token_identity (Token* p);

To determine whether that string contains an INTEGER, we use the function from the
character handling library to ensure that each character of the string representing the
token is a digit. If the string contains all digits but a single ‘.’ then the type will be
FLOATING. If the string contains only alphabetic characters, then the type will be
TEXT. If the string has only one character which is ‘+’, ‘-‘, ‘/’ or ‘*’ then it is an
OPERATOR. Otherwise, the type will be UNKNOWN.

When we display all tokens, we make sure to check the value of the TokenType field
and display what the identified type of the token is.

New tests are added so we may see our function identify the right TokenTypes. New
features added means more tests needed.

Step #4: Feature –Numerical tokens into values?
Let’s add to the Token data structure a field value which is a union of two fields; integer

and floating of respective type int and double.

union token_value {
 int integer;
 double floating ;

};
typedef union token_value TokenValue;

struct token {
 char* str;
 TokenType type;
 TokenValue value;
};
typedef struct token Token;

These fields will be used in every token which identified type is respectively INTEGER
or FLOATING. When the token_identify function determines the type of a given token’s
string to be either INTEGER or FLOATING, it will proceed to convert the contents of
that string into a value of type int or double and store it inside the value union field’s
appropriate subfield (i.e. integer or floating).To make these conversions, use the sscanf
function (check its man page).

Apply regression testing to ensure your program is still working appropriately and make
sure that the display function now also displays the value of each token.

Step #5: Feature – Evaluating post-fix expressions
Let’s add a function double tokens_evaluate (Tokens* p); which evaluates the

expression typed by the user into a double value. This is assuming that the expression
typed by the user is only made of tokens of the type OPERATOR, INTEGER or
FLOATING and that it respects the syntax of postfix arithmetic expressions.

Before we go any further, let’s explain what this means.
Postfix notations allow you to write arithmetic expression by
putting the operands first and then the operator. In our program,
we will only handle binary operators (+, -, / and *) so this means
that the following expressions should be written as indicated in
the right column.

To keep this version easy, we will not worry about priorities. We will assume the user
typed the expression in a way which allows us to simply evaluate it right to left. The
evaluation will be done by the tokens_evaluate function with the following algorithm;

- Verify that the list of tokens only contains OPERATOR, INTEGER or
FLOATING tokens (use functions tokens_verify and token_verify to do so).

- Start with the last token, if this token is a value, then you just got the value of
your whole expression (ignore the other tokens)

- If that last token is an operator, then we will start evaluating. In order to do so
we need to look at the next token. If it is a value, then you have one of your
operand. You then look to the token before with the same logic.

- If at any point, one of your operands is not a value but an operator, then you
need to apply this operator on its own operands and use the resulting value

This suggests that we can write a recursive algorithm to work on this evaluation. It also
suggests that we are using our dynamical array of Token* almost as a stack.

double tokens_evaluate (Tokens* p, int* index)
if index < 0
 no tokens left
 raise error: not enough tokens in expression

if p->tokens[index] is a value

 return this value as a double

if p->tokens[index] is an operator
 we look for 1st operand
 index --
 op1 = tokens_evaluate (p, &index);
 we look for 2nd operand
 index --
 op2 = tokens_evaluate (p, & index);
 Apply the operator designated by p->tokens[index]
 to op1 and op2, return the resulting value as a double

Infix
notation

 Postfix
notation

3 + 6 3 6 +
3 + 6 /
9

 3 6 9 / +
6 9 / 3 +

