
Module [201] – Practice Assignment

We want to implement two functions which are part of a program meant to operate on

two dimensional integer matrix. One function will test whether a given matrix is in order
or not. The other will sort it. In addition to these functions, we will also work on defining
code to automate the testing of our two main functions. We’re getting one tiny step nearer
to how testing is actually done “in the real world”.

This is the first practice assignment where you will be able to collaborate with other
students by posting your tests in a format making it easy to run other students’ tests on
your own implementation of the above-mentioned functions. You should find that having
other students evaluate your program by running their tests against your code, will help
you find bugs, catch features you forgot to implement, and fix miss-interpretations of the
requirements… All this without actually having other students take the keyboard away
from you to fix your “bugs” without giving you an opportunity to learn from your errors.

In addition to being used to detect novice errors and offer tutorials on compiler errors,
CLUE will be used this time to download and upload your PA.

The files you will have to work with

You will be provided with several files to get you started working on this assignment.
Make sure you edit them but do not alter their name or add new files. Here are the files;

main.c do not modify this file, it will by default call the two functions you have to

implement and apply them to a list of tests which you will also define.
setup.h This header file contains some constants which are used in the whole

program to make things a little easier. You should not modify the number
of rows and columns of the matrices but you will have to alter the number
of tests since you will be the one writing them. When you modify this file,
make sure to rebuild the whole project as explained in the comments.

tools.c Part of your work will consist in implementing two functions. The
prototypes are already provided along with comments describing what
they should be doing.

tests.c The other part of your work will consist in devising tests which will
guarantee that your implementation of both functions is valid. You will
have to comment each test, as illustrated with the first one which I give
you for free, to explain what you are trying to evaluate with it.

Task #1 – Implementing and testing your isMatrixSorted

Some reading before you start
Before to start working on implementing anything, you’ll have to read the entire source

and make sure you understand what it is doing so that you are able to add to it without
breaking everything. Pay specific attention to the way the program parts already written
for you will use the data in tests_inputs and tests_expected, defined in tests.c, in order to
invoke your function with some pre-determined parameters and verify it returns the
expected result.

In addition, spend some time reading the requirements in this document and modify the
arrays in tests.c to reflect the tests you think your program ought to pass to meet these
requirements. When you do so, make sure you update accordingly the value of the
NB_TESTS integer constant defined in the same file.

When you think your tests are sufficient, post this preliminary version in a new thread
on the module [201] forum.

Implementing your solution
Next step is implementing the isMatrixSorted function in the tools.c file so that it

detects whether a matrix passed as parameter is already sorted or not and returns an
appropriate value. Refer to the comments in the code for the specific details.

To give you an example, a two dimensional 3x5 matrix is sorted when its elements are
ordered as follows;

3 5 9 20 20
42 50 55 99 142
200 209 500 900 999

Testing your solution
Now is time to take what you learned when you actually started implementing the

solution and when you had to fend off your first bugs. Revise the tests you previously
used to populate the arrays tests_inputs and tests_expected in file tests.c. As you add or
remove tests, make sure you remember to update accordingly the value of the
NB_TESTS integer constant defined in the same file.

When you are satisfied that you have a good suite of tests, post your tests.c file on the
module [201] forum again, revising the one you initially posted right as you were reading
the requirements.

Having others do the testing for you
Now that you’re pretty happy with your implementation and your testing, what about

we get someone else to try to break your work for you?
Go to module [201] forum and download a few tests.c files posted by your classmates.

Rename each file tests-smith.c or tests-jake.c before to save them to your project’s folder.
You should rename your own tests.c as tests-myown.c to make sure it never gets
overwritten.

Now, each time you want to use another student’s tests against your implementation of
the function, simply copy his/her file as tests.c and recompile the whole project. Their
testing data will be applied to your function.

This will help you find bugs, features you forgot to implement, features you miss-
interpreted, … With just enough help to get you unstuck but while still letting you
develop these troubleshooting skills you need to develop on your own.

Feel free to post in your own thread or in the threads of students whom tests you are
using to let them know how it worked. E.g. “Sorry but your test #3 is wrong, the
assignment doesn’t ask for this!!!”.

Bit of refactoring
Do not attempt the rest of this assignment until your function is working on a good

quality suite of tests. See the last section for advices on how to design a good “test
harness”.

Now that things are working, what about refactoring / simplifying your program and
tests? Adding comments and making your code easier to maintain.

Task #2 – Implementing and Testing matrixSort

When we are going to test your 2nd function, matrixSort, we are going to rely on
isMatrixSorted. This means you should not attack this part of the practice assignment
before to be fairly sure your isMatrixSorted function works.

Some reading before you start
Read the requirements and the comments in the program itself to make sure you

understand what’s expected of this function and then take a shot at adding more tests
focused on ensuring the function works. This should be relatively easy and maybe you
won’t be able to think to many more tests to add to those you used to validate
isMatrixSorted. Go back to your thread in module [201] forum and post your new
version of the tests, if any.

Implementing your solution
The matrixSort function will take a two dimensional integer matrix which might or

might not be already ordered and order it in a manner which isMatrixSorted will
recognize as ordered. There are different algorithms you might implement.

Most students like to use the “bubble sort” from the textbook and adapt it to a two

dimensional matrix. I personally think it’s a bit too much work.

Others go with the following logic; we need to look at each element of the matrix in

order, one after the other. For each such element, I use loops to go other all the elements
between it and the end of the matrix. Each time, I compare the two elements and swap
them if they are out of order. This result is me looking for the smallest element and
putting it first in the matrix, then looking for the next smallest one and putting it second
in the matrix. For a one dimensional array, the algorithm would look something like;

// my array name is data which has indexes between 0 and N-1
int i,j;
for(i=0 ; i < N-1; i++){
 for(j=i+1; j < N ; j++){
 if(data[i] > data[j]) SWAP THEM
 }
}

The hard part is to adapt this to a two dimensional matrix. Some students found

interesting work around so feel free to explore.

Testing your solution
Again, you might have learned a bit more about the problem as you were trying to

implement it. You might have found some bugs which you are now able to write a test to
make sure you won’t revert back to them.

E.g. I had a bug when only the first and last elements were not in order, I was pretty
much off by one in one of my loops. I’m now adding a test to make sure I detect this
specific bug from now on.

Revise your tests, post them again.

Having others do the testing for you
Others might have had different bugs, they might have got different insights about the

problem at hand. Time to see if your implementation handles their tests.

Bit of refactoring
Now that things are working, what about refactoring / simplifying your program and

tests? Adding comments and making your code easier to maintain.

