
PA 203 – Tiny Taurahe Translator

We would have trouble writing a program to actually translate English sentences into
another natural language. Of course, if we make up the language and fake a translation
process, then things get suddenly easier.

This PA encourages you to leverage the available standard library functions instead of
re-implementing your own versions.

The files you will have to work with

You will be provided with several files to get you started working on this assignment.
Make sure you edit them but do not alter their name or add new files. Here are the files;

main.c will contain the main function of your program. It will display a
“Welcome message” similar to that found in previous programming
assignments and then it will invoke the runAllTests function which will
be defined in tests.c

tests.c will contain your test functions, including runAllTests which is invoked
from the main.

tools.c will contain the definition of the two functions you will have to write

tools.h will contain the headers of the two functions you will have to write

Business as usual

 By now, you should be used to the fact that you need to implement a solution to the
requirements expressed in these instructions, develop tests, posts and discuss your tests
on the module’s forum and refactor here and then to improve the quality of your solution.

The following instructions will assume you’re already used to this from the two
previous practice assignments and will therefore skip reminders.

Task #1 –Implementing and testing taurahize_word

The first function we need to implement in tools.c is the one which, given a string
parameter with an English word, will return a newly allocated string containing its
translation in “Taurahe”. Its prototype is as follows;

char* taurahize_word(const char * const word);

Implementing your solution
The translation process is pretty straightforward; we are measuring the length of the

word which was passed as parameter, assuming it uses the whole string to make things
simpler, and we look up in a table to see what all words of this length translate into.

letters in
word

Taurahe
Translation

letters in
word

Taurahe Translation

0 “” 8 “Akiticha”

1 “A” 9 “Echeyakee”

2 “Ba” 10 “Awakahnahe”

3 “Aki” 11 “Aloakihshne”

4 “Aoke” 12 “Awakeekieloh”

5 “Aehok” 13 “Ishnehawahalo”

6 “Aloaki” 14 “Awakeeahmenalo”

7 “Ishnelo” 15 “Ishnehalohporah”

This “translation table” will have to be a static array of strings inside your function. At
index i, ranging from 0 to 15, we will have a string representing our “translation” in
Taurahe of all English words of length i.

Translating means measuring the length of word, looking up the Taurahe word in the
table and returning a new copy of it obtained with strdup. Attempting to translate a word
longer than 15 characters will result in the function returning a copy of “#@%” which is
Taurahe for “whatever, man”.

Testing your solution
Add your tests for this function to tests.c. You will notice that this function has an array

dedicated to only evaluating it. You will be graded on the quality and justification of the
tests, but also on the extensibility and design of your testing code.

Task#2 – Implementing and testing taurahize_phrase

Now that we know how to “Taurahize” one word at a time, let’s translate entire phrases!
Here is the prototype of this new function;

char* taurahize_phrase(const char * const phrase);

Implementing your solution
This new function will start by measuring the length of the string to translate and

allocate dynamically a string of same length. The address of this “translation buffer” will
be stored in a translation pointer and will be initialized to have a ‘\0’ as first character. It
will be used to build, step by step, the translation of the whole string that was given to us.

We will then use strdup to make a duplicate of the string to translate. This “working
copy” will be passed to the strtok function in order to extract all its words one by one.
We will assume that only the space character ‘ ‘ is used as a delimiter between words.

Each word will then be passed to taurahize_word so that we obtain a new string
representing its translation. Each of these will be appended, using strcat, to our
translation. Keep at least a space between each word in translation. However, it’s fine
if we have just a single space between translated words even if the original string had
multiple spaces between words. We don’t guarantee that we keep the spacing as it
originally was during our translation process since it doesn’t alter the “meaning” of the
translation.

Now, make sure you return the address of your translation translation and de-allocate
any memory you don’t need. This includes the words returned by strtok. However, you
need to really understand how strtok works so that you are able to de-allocate these
properly. Do not de-allocate the string you plan on returning!

Testing your solution
Add some tests to your tests.c file to also validate this function.

