
 1 of 12

Introduction to Programming with RAPTOR
By Dr. Wayne Brown

What is RAPTOR?

RAPTOR is a visual programming development environment based on flowcharts. A flowchart
is a collection of connected graphic symbols, where each symbol represents a specific type of
instruction to be executed. The connections between symbols determine the order in which
instructions are executed. These ideas will become clearer as you use RAPTOR to solve
problems.

We use RAPTOR in CS110 for several reasons.

• The RAPTOR development environment minimizes the amount of syntax you must learn
to write correct program instructions.

• The RAPTOR development environment is visual. RAPTOR programs are diagrams
(directed graphs) that can be executed one symbol at a time. This will help you follow the
flow of instruction execution in RAPTOR programs.

• RAPTOR is designed for ease of use. (You might have to take our word for this, but
other programming development environments are extremely complex.)

• RAPTOR error messages are designed to be more readily understandable by beginning
programmers.

• Our goal is to teach you how to design and execute algorithms. These objectives do not
require a heavy-weight commercial programming language such as C++ or Java.

RAPTOR Program Structure

A RAPTOR program is a set of connected symbols that represent actions to be
performed. The arrows that connect the symbols determine the order in which the
actions are performed. When executing a RAPTOR program, you begin at the
Start symbol and follow the arrows to execute the program. A RAPTOR
program stops executing when the End symbol is reached. The smallest RAPTOR
program (which does nothing) is depicted at the right. By placing additional
RAPTOR statements between the Start and End symbols you can create meaningful
RAPTOR programs.

Introduction to RAPTOR Statements/Symbols

RAPTOR has six (6) basic symbols, where each symbol represents a unique
type of instruction. The basic symbols are shown at the right. The top four
statement types, Assignment, Call, Input, and Output, are explained
in this reading, The bottom two types, Selection and Loops, will be
explained in a future reading.

 2 of 12

The typical computer program has three basic components:
• INPUT – get the data values that are needed to accomplish the task.
• PROCESSING – manipulate the data values to accomplish the task.
• OUTPUT – display (or save) the values which provide a solution to the task.

These three components have a direct correlation to RAPTOR instructions as shown in the
following table.

Purpose Symbol Name Description

INPUT

input
statement

Allow the user to enter data. Each data value
is stored in a variable.

PROCESSING

assignment
statement

Change the value of a variable using some
type of mathematical calculation.

PROCESSING

procedure
call

Execute a group of instructions defined in
the named procedure. In some cases some of
the procedure arguments (i.e., variables) will
be changed by the procedure's instructions.

OUTPUT

output
statement

Display (or save to a file) the value of a
variable.

The common thread among these four instructions is that they all do something to variables! To
understand how to develop algorithms into working computer programs, you must understand
the concept of a variable. Please study the next section carefully!

RAPTOR Variables

Variables are computer memory locations that hold a data value. At any given time a variable
can only hold a single value. However, the value of a variable can vary (change) as a program
executes. That's why we call them "variables"! As an example, study the following table that
traces the value of a variable called X.
 Description Value of

X
Program

• When the program begins, no variables exist. In

RAPTOR, variables are automatically created when
they are first used in a statement.

Undefined

• The first assignment statement, X←32, assigns the data
value 32 to the variable X.

32

• The next assignment statement, X←X+1, retrieves the
current value of X, 32, adds 1 to it, and puts the result,
33, in the variable X.

33

• The next assignment statement, X←X*2, retrieves the
current value of X, 33, multiplies it by 2, and puts the
result, 66, in the variable X.

66

 3 of 12

During the execution of the previous example program, the variable X stored three distinct
values. Please note that the order of statements in a program is very important. If you re-ordered
these three assignment statements, the values stored into X would be different.

A variable can have its value set (or changed) in one of three ways:

• By the value entered from an input statement.
• By the value calculated from an equation in an assignment statement.
• By a return value from a procedure call (more on this later).

It is variables, and their changing data values, that enable a program to act differently every time
it is executed.

All variables should be given meaningful and descriptive names by the programmer. Variable
names should relate to the purpose the variable serves in your program. A variable name must
start with a letter and can contain only letters, numerical digits, and underscores (but no spaces or
other special characters). If a variable name contains multiple "words," the name is more
"readable" if each word is separated by an underscore character. The table below shows some
examples of good, poor, and illegal variable names.

Good variable names Poor variable names Illegal variable names
tax_rate
sales_tax
distance_in_miles
mpg

a (not descriptive)
milesperhour (add underscores)
my4to (not descriptive)

4sale (does not start with a letter)
sales tax (includes a space)
sales$ (includes invalid character)

IMPORTANT: If you give each value in a program a meaningful, descriptive variable name, it
will help you think more clearly about the problem you are solving and it will help you find
errors in your program.

One way of understanding the purpose of variables is to think of them as a means to
communicate information between one part of a program and another. By using the same
variable name in different parts of your program you are using the value that is stored at that
location in different parts of your program. Think of the variable as a place holder or storage
area for values between each use in your program computations.

When a RAPTOR program begins execution, no variables exist. The first time RAPTOR
encounters a new variable name, it automatically creates a new memory location and associates
this variable name with the new memory. The variable will exist from that point in the program
execution until the program terminates. When a new variable is created, its initial value
determines whether the variable will store numerical data or textual data. This is called the
variable's data type. A variable's data type cannot change during the execution of a program. In
summary, variables are automatically created by RAPTOR and can hold either:

• Numbers e.g., 12, 567, -4, 3.1415, 0.000371, or
• Strings e.g., “Hello, how are you?”, “James Bond”, “The value of x is ”

 4 of 12

Common errors when using variables:
Error 1: "Variable ____ does not have a value"

 There are two common reasons for this error:

1) The variable has not been given a value. 2) The variable name was misspelled.

Start

X ← Y

End

Error 2: "Can't assign string to numeric variable _____"
 "Can't assign numeric to string variable _____"
 This error will occur if your statements attempt to change the data type of a variable.

Start

Miles ← 100

Distance ← Mile * 5

End

Start

Miles ← 100

Miles ← "Distance to town"

End

 5 of 12

RAPTOR Statements/Symbols

The following four sections provide details about each of the four basic statements: Input,
Assignment, Call, and Output.

Input Statement/Symbol

An input statement/symbol allows the user of a program to enter a data value into a program
variable during program execution. It is important that a user know exactly what type of value is
expected for input. Therefore, when you define an
input statement you specify a string of text that will
be the prompt that describes the required input. The
prompt should be as explicit as possible. If the
expected value needs to be in particular units (e.g.,
feet, meters, or miles) you should mention the units
in the prompt.

When you define an input statement, you must
specify two things: a prompt and the variable that
will be assigned the value enter by the user at run-
time. As you can see by the “Enter Input” dialog
box at the right there are two types of input
prompts: Text and Expression prompts. An
Expression prompt enables you to mix text and
variables together like the following prompt:
“Enter a number between ” + low +
“ and ” + high + “: ”.

At run-time, an input statement will display an
input dialog box, an example of which is shown
to the right. After a user enters a value and hits
the enter key (or clicks OK), the value entered
by the user is assigned to the input statement's
variable.

Make sure you distinguish between the "definition of a statement" and the "execution of a
statement". The dialog box that is used to define a statement is totally different from the dialog
box that is used at run-time when a program is executing.

 6 of 12

Assignment Statement/Symbol

The assignment symbol is used to perform a computation and then store the results in a variable.
The definition of an assignment statement is performed using the dialog box shown on the right.
The variable to be assigned a value is entering
into the "Set" field, and the computation to
perform is enter into the "to" field. The
example on the right sets the value of the
variable x to 0.707106781186547.

An assignment statement is displayed inside its
RAPTOR symbol using the syntax:

Variable ← Expression

For example, the statement created by the
dialog box to the right is displayed as:

x ← sin(pi / 4)

One assignment statement can only change the
value of a single variable, that is, the variable
on the left hand side of the arrow. If this
variable did not exist prior to the statement, a
new variable is created. If this variable did
exist prior to the statement, then its previous
value is lost and its new value is based on the
computation that is performed. No variables on
the right hand side of the arrow (i.e., the
expression) are ever changed by the
assignment statement.

Expressions
The expression (or computation) of an assignment statement can be any simple or complex
equation that computes a single value. An expression is a combination of values (either constants
or variables) and operators. Please carefully study the following rules for constructing valid
expressions.

A computer can only perform one operation at a time. When an expression is computed, the
operations of the equation are not executed from left to right in the order that you typed them in.
Rather, the operations are performed based on a predefined "order of precedence." The order that
operations are performed can make a radical difference in the value that is computed. For
example, consider the following two examples:
 x ← (3+9)/3 x ← 3+(9/3)

 7 of 12

In the first case, the variable x is assigned a value of 4, whereas in the second case, the variable x
is assigned the value of 6. As you can see from these examples, you can always explicitly control
the order in which operations are performed by grouping values and operators in parenthesis.
The exact "order of precedence" is

1. compute all functions, then
2. compute anything in parentheses, then
3. compute exponentiation (^,**) i.e., raise one number to a power, then
4. compute multiplications and divisions, left to right, and finally
5. compute additions and subtractions, left to right.

An operator or function directs the computer to perform some computation on data. Operators
are placed between the data being operated on (e.g. X/3) whereas functions use parentheses to
indicate the data they are operating on (e.g. sqrt(4.7)). When executed, operators and
functions perform their computation and return their result. The following lists summarize the
built-in operators and functions of RAPTOR.

basic math: +, -, *, /, ^, **, rem, mod, sqrt, log, abs, ceiling, floor
trigonometry: sin, cos, tan, cot, arcsin, arcos, arctan, arccot
miscellaneous: random, Length_of

The following table briefly describes these built-in operators and functions. Full details
concerning these operators and functions can be found in the RAPTOR help screens.

Operation Description Example
+ addition 3+4 is 7
- subtraction 3-4 is -1
- negation -3 is a negative 3
* multiplication 3*4 is 12
/ division 3/4 is 0.75
^
**

exponentiation, raise a number to a
power

3^4 is 3*3*3*3=81
3**4 is 81

rem
mod

remainder (what is left over) when
the right operand divides the left
operand

10 rem 3 is 1
10 mod 4 is 2

sqrt square root sqrt(4) is 2
log natural logarithm (base e) log(e) is 1
abs absolute value abs(-9) is 9
ceiling rounds up to a whole number ceiling(3.14159) is 4
floor rounds down to a whole number floor(9.82) is 9
sin trig sin(angle_in_radians) sin(pi/6) is 0.5
cos trig cos(angle_in_radians) cos(pi/3) is 0.5
tan trig tan(angle_in_radians) tan(pi/4) is 1.0
cot trig cotangent(angle_in_radians) cot(pi/4) is 1
arcsin trig sin-1(expression), returns radians arcsin(0.5) is pi/6
arcos trig cos-1(expression), returns radians arccos(0.5) is pi/3

 8 of 12

arctan trig tan-1(y,x), returns radians arctan(10,3) is 1.2793
arccot trig cot-1(x,y), returns radians arccot(10,3) is 0.29145
random generates a random value in the

range [1.0, 0.0)
random * 100 is some value
between 0 and 99.9999

Length_of returns the number of characters in a
string variable

Example ← "Sell now"
Length_of(Example) is 8

The result of evaluating of an expression in an assignment statement must be either a single
number or a single string of text. Most of your expressions will compute numbers, but you can
also perform simple text manipulation by using a plus sign (+) to join two or more strings of text
into a single string. You can also join numerical values with strings to create a single string. The
following example assignment statements demonstrate string manipulation.

Full_name ← "Joe " + "Alexander " + "Smith"
Answer ← "The average is " + (Total / Number)

RAPTOR defines several symbols that represent commonly used constants. You should use
these constant symbols when you need their corresponding values in computations.

pi is defined to be 3.14159274101257.
e is defined to be 2.71828174591064

Procedure Call Statement/Symbol

A procedure is a named collection of programming statements that accomplish a task. Calling a
procedure suspends execution of your program, executes the instructions in the called procedure,
and then resumes executing your program at the
next statement. You need to know two things to
correctly use a procedure: 1) the procedure's
name and 2) the data values that the procedure
needs to do its work, which are called
arguments.

RAPTOR attempts to minimize the number of
procedure names you need to memorize by
displaying any procedure name that partially
matches what you type into the "Enter Call"
window. For example, after entering the single
letter "d," the lower portion of the window will
list all built-in procedures that start with the
letter "d". The list also reminds you of each
procedure's required arguments. In the example
to the right, the lower box is telling you that the
"Draw_Line" procedure needs 5 data values: the
x and y coordinates of the starting location of
the line, (x1, y1), the x and y coordinates of the
ending location of the line, (x2, y2), and the

 9 of 12

line's color. The order of the argument values must match the arguments defined by the
procedure. For example, Draw_Line(Blue, 3, 5, 100, 200) would generate an error
because the color of the line must be the last argument value in the argument list.

When a procedure call is displayed in your RAPTOR program you can see the procedure's name
and the argument values that will be sent to the procedure when it is
called. For example, when the first procedure call on the right is
executed it will draw a red line from the point (1,1) to the point
(100,200). The second procedure call will also draw a line, but since the
arguments are variables, the exact location of the line will not be known
until the program executes and all the argument variables have a value.

RAPTOR defines too many built-in procedures to describe them all here. You can find
documentation on all built-in procedures in RAPTOR's help screens. In addition, your instructor
will introduce relevant procedures as we tackle various problem solving tasks in the coming
lessons.

Output Statement/Symbol

In RAPTOR, an output statement displays a value to the MasterConsole window when it is
executed. When you define an output statement,
the "Enter Output" dialog box asks you to
specify three things:

• Are you displaying text, or the results of
an expression (computation)?

• What is the text or expression to display?
• Should the output be terminated by a

new line character?
The example output statement on the right will
display the text, "The sales tax is" on the output
window and terminate the text with a new line.
Since the "End current line" is checked, any
future output will start on a new line below the
displayed text.

When you select the "Output Text" option, the
characters that you type into the edit box will be
displayed exactly as you typed them, including
any leading or trailing spaces. If you include
quote marks (") in the text, the quote marks will
be displayed exactly as you typed them.

aw_Line(1, 1, 100, 200, red)

rt, yStart, xEnd, yEnd, Line_color)

 10 of 12

When you select the "Output Expression" option, the text you type into the edit box is treated as
an expression to be evaluated. When the output statement is executed at run-time, the expression
is evaluated and the resulting single value that
was computed is displayed. An example output
statement that displays the results of an
expression is shown on the right.

You can display multiple values with a single
output statement by using the "Output
Expression" option and building a string of text
using the string plus (+) operator. When you
build a single string from two or more values,
you must distinguish the text from the values to
be calculated by enclosing any text in quote
marks ("). In such cases, the quote marks are not
displayed in the output window. For example,
the expression,

"Active Point = (" + x + "," + y + ")"

will display the following if x is 200 and y is 5:

 Active Point = (200,5)

Notice that the quote marks are not displayed on
the output device. The quote marks are used to
surround any text that is not part of an
expression to be evaluated.

Your instructor (or a homework assignment) will
often say “Display the results in a user-friendly
manner”. This means you should display some explanatory text explaining any numbers that are
output to the MasterConsole window. An example of "non-user-friendly output" and "user-
friendly output" is shown below.

Non-user-friendly output User-friendly output

Area ← pi * radius ^ 2

PUT Area¶

Area ← pi * radius ^ 2

 Area = " + Area + " square inches"¶

Example output: 2.5678 Example output: Area = 2.5678 square inches

 11 of 12

Comments in RAPTOR

The RAPTOR development environment, like many other programming languages, allows
comments to be added to your program. Comments are used to explain some aspect of a program
to a human reader, especially in places where the program code is complex and hard to
understand. Comments mean nothing to the computer and are not executed. However, if
comments are done well, they can make a program much easier to understand for a human
reader.

To add a comment to a statement, right-click your mouse over the
statement symbol and select the "Comment" line before releasing
the mouse button. Then enter the comment text into the "Enter
Comment" dialog box, an example of which is shown to the right.
The resulting comment can be moved in the RAPTOR window by
dragging it, but you typically do not need to move the default
location of a comment.

There are three general types of comments:

• Programmer header – documents who wrote the program, when it was written, and a
general description of what the program does. (Add to the "Start" symbol)

• Section description – mark major sections of your program to make it easier for a
programmer to understand the overall program structure.

• Logic description – explain non-standard logic.
Typically you should not comment every statement in a program. An example program that
includes comments is shown below.

Start

Get inputs

"Enter the cylider radius"
GET radius

"Enter the cylinder height"
GET height

volume ← pi * radius ^ 2 * height

surface_area ← 2 * pi * radius ^ 2 + 2 * pi * radius * height

Output results

PUT "Volume = " + Volume + " cube units"¶

PUT "Surface area = " + Surface_area + " square units"¶

End

Note: the surface area includes the top and bottom ends

Calculations

Written by: C4C Grant Logic
Date: 8 July 2006

Description: Calculate properties of a cylinder

 12 of 12

What you have hopefully learned…

• The basic structure and types of statements of a RAPTOR program.

• What a variable is and how variables are used.

• How to write computations (i.e., expressions) that calculate desired values.

• How to get input values into a program and how to display output values.

• How to add appropriate comments to make a program more readable.

Reading Self-Check

1. Label the following RAPTOR identifiers as (G) good, (P) poor, or (I) Illegal. If illegal then
explain why.
____ 1) This_Is_A_Test
____ 2) U_2
____ 3) Money$
____ 4) Thisisanawfullylongidentifiername
____ 5) Mickey-Mouse
____ 6) 365_Days
____ 7) Variable
____ 8) Is This Identifier Legal
____ 9) Why_Isn’t_This_One_Legal

2. Why are comments important?

3. True or False. In RAPTOR, a variable does not have a value (in its memory location) until a
program instruction gives it a value.

4. Calculate the result of the following expressions (or indicate if the expression contains errors)

 Result
__________ 1) 46 / 2
__________ 2) 4 + 6 * 2
__________ 3) 12 / 3 / 2
__________ 4) (4 + 2) / (5 – 3) + 2
__________ 5) 46 / 3
__________ 6) 46 rem 3
__________ 7) 3(4 + 3)
__________ 8) 6 ** sqrt(4)
__________ 9) 77 + -11

	Introduction to Programming with RAPTOR
	What is RAPTOR?
	RAPTOR Program Structure
	Introduction to RAPTOR Statements/Symbols
	RAPTOR Variables
	RAPTOR Statements/Symbols
	Input Statement/Symbol
	Procedure Call Statement/Symbol
	Output Statement/Symbol
	Comments in RAPTOR
	What you have hopefully learned…
	Reading Self-Check

