
 1 of 15

Programming Control Structures
By Dr. Wayne Brown

Introduction
One of the most important aspects of programming is controlling which statement will execute
next. Control structures / Control statements enable
a programmer to determine the order in which
program statements are executed. These control
structures allow you to do two things: 1) skip some
statements while executing others, and 2) repeat one
or more statements while some condition is true.

RAPTOR programs use six basic types of
statements, as shown in the figure to the right. You
have already learned about the four basic commands
in a previous reading. In this reading you will learn
about the Selection and Loop commands.

Sequential Program Control
All of the RAPTOR programs you have seen in previous readings have used sequential program
control. By sequential we mean "in sequence," one-after-the-other. Sequential logic is the easiest
to construct and follow. Essentially you place each statement in the order that
you want them to be executed and the program executes them in sequence from
the Start statement to the End statement. As you can see by the example
program to the right, the arrows linking the statements depict the execution
flow. If your program included 20 basic commands then it would execute those
20 statements in order and then quit.

When you are solving a problem as a programmer, you must determine what
statements are needed to create a solution to the problem and the order in which
those statements must be executed. Writing the correct statements is one task.
Determining where to place those statements in your program is equally
important. For example, when you want to get and process data from the user
you have to GET the data before you can use it. Switching the order of these
statements would produce an invalid program.

Sequential control is the "default" control in the sense that every statement
automatically points to the next statement in the flowchart diagram. You do not
need to do any extra work to make sequential control happen. However, using
sequential control alone will not allow the development of solutions for most real-world
problems. Most real world problems include "conditions" that determine what should be done
next. For example, "If it is after taps, then turn your lights out," requires a decision to be made
based on the time of day. The "condition" (i.e., the current time of day) determines whether the
action should be executed or not executed. This is called "selection control" and is introduced
next.

Statement 1

Statement 2

Statement 3

Statement 1

Statement 2

Statement 3

Basic
Commands

Flow of Control
Commands

 2 of 15

Selection Control
It is common that you will need to make a decision about some
condition of your program's data to determine whether certain
statements should be executed. For example, if you were calculating the
slope of a line using the assignment statement, slope ← dy / dx, then you need to make
sure that the value of dx is not zero (because division by zero is mathematically undefined and
will produce a run-time error). Therefore, the decision you would need to make is, "Is dx zero?"

A selection-control statement allows you to make "decisions" in your code about the current
state of your program's data and then to take one of two alternative paths to a "next" statement.
The RAPTOR code on the right illustrates a selection-
control statement, which is always drawn as a diamond.
All decisions are stated as "yes/no" questions. When a
program is executed, if the answer to a decision is "yes"
(or true), then the left branch of control is taken. If the
answer is "no" (or false), then the right branch of control
is taken. In the example to the right, either statement 2a
or statement 2b will be executed, but never both. Note
that there are two possible executions of this example
program:

Possibility 1 Possibility 2
Statement 1
Statement 2a
Statement 3

Statement 1
Statement 2b
Statement 3

Also note that either of the two paths of a selection-
control statement could be empty or could contain
several statements. It would be inappropriate for both
paths to be empty or for both paths to have the exact
same statements, because then your decision, Yes or No,
would have no effect during program execution (since
nothing different would happen based on the decision).

Decision Expressions
A selection-control statement requires an expression that can be evaluated into a "Yes/No" (or
True/False) value. A decision expression is a combination of values (either constants or
variables) and operators. Please carefully study the following rules for constructing valid
decision expressions.

As you hopefully recall from our discussion of assignment statement expressions, a computer
can only perform one operation at a time. When a decision expression is evaluated, the
operations of the expression are not evaluated from left to right in the order that you typed them.
Rather, the operations are performed based on a predefined "order of precedence." The order that
operations are performed can make a radical difference in the final "Yes/No" value that is
computed. You can always explicitly control the order in which operations are performed by

Statement 1

Statement 3

Statement 2a Statement 2b

Decision

Statement 1

Statement 3

Statement 2a Statement 2b

Decision

 3 of 15

grouping values and operators in parenthesis. Since decision expressions can contain calculations
similar to those found in assignment statements, the following "order of precedence" must
include assignment statement expression operators. The "order of precedence" for evaluating
decision expression is:

1. compute all functions, then
2. compute anything in parentheses, then
3. compute exponentiation (^,**) i.e., raise one number to a power, then
4. compute multiplications and divisions, left to right, then
5. compute additions and subtractions, left to right, then
6. evaluate relational operators (= != /= < <= > >=), left to right,
7. evaluate any not logical operators, left to right,
8. evaluate any and logical operators, left to right,
9. evaluate any xor logical operators, left to right, then finally
10. evaluate any or logical operators, left to right.

In the above list, the relational and logical operators are new. These new operators are explained
in the following table.

Operation Description Example
= "is equal to" 3 = 4 is No(false)
!=
/=

"is not equal to" 3 != 4 is Yes(true)
3 /= 4 is Yes(true)

< "is less than" 3 < 4 is Yes(true)
<= "is less than or equal to" 3 <= 4 is Yes(true)
> "is greater than" 3 > 4 is No(false)
>= "is greater than or equal to" 3 >= 4 is No(false)
and Yes(true) if both are Yes (3 < 4) and (10 < 20)

is Yes(true)
or Yes(true) if either are Yes (3 < 4) or (10 > 20)

is Yes(true)
xor Yes(true) if the "yes/no" values

are not equal
Yes xor No
is Yes(true)

not Invert the logic of the value
Yes if No; No if Yes

not (3 < 4)
is No(false)

The relational operators, (= != /= < <= > >=), must always compare two values of the
same data type (either numbers, text, or "yes/no" values). For example, 3 = 4 or "Wayne" =
"Sam" are valid comparisons, but 3 = "Mike" is invalid.

The logical operators, (and , or, xor), must always combine two Boolean values (true/false)
into a single Boolean value. The logical operator, not, must always convert a single Boolean
value into its opposite truth value. Several valid and invalid examples of decision expressions are
shown below:

 4 of 15

Example Valid or Invalid?
(3<4) and (10<20) Valid
(flaps_angle < 30) and
(air_speed < 120)

Valid, assuming flaps_angle and air_speed
both contain numerical data.

5 and (10<20) Invalid - the left side of the "and" is a number, not
a true/false value.

5 <= x <= 7 Invalid - because the 5 <= x is evaluated into a
true/false value and then the evaluation of
true/false <= 7 is an invalid relational
comparison.

Selection Control Examples
To help clarify selection-control
statements, please study the
following examples. In the first
example to the right, if a student
has made the Dean's List, then a
congratulations message will be
displayed - otherwise nothing is
displayed (since the "no" branch is
empty).

In the next example, one line of
text is always displayed, with the
value of the PGA variable
determining which one.

In the next example, if the student
does not make the Dean's list then
two lines of text are displayed, but
only one line is displayed if they
do.

"Enter your PGA"
GET GPA

GPA >= 3.0

 gratulations for making the Dean's list!"¶

NoYes

GPA >= 3.0

 ratulations for making the Dean's list!"¶ PUT "Sorry, you did not make the Dean's list."¶

NoYes

GPA >= 3.0

 ratulations for making the Dean's list!"¶ PUT "Sorry, you did not make the Dean's list."¶

PUT "Please study harder next semester"¶

NoYes

 5 of 15

In the last example to the right, the
logic of the decision expression has
been inverted. This is perfectly
acceptable as long as you make
sure the inversion covers all
possible cases. Note that the
inversion of "greater than or equal
to" is simply "less than."

Cascading Selection statements
A single selection-control statement can make a choice between one or two choices. If you need
to make a decision that involves more than two choices, you need to have multiple selection
control statements. For example, if you are assigning a letter grade (A, B, C, D, or F) based on a
numeric score, you need to select between five choices, as shown below. This is sometimes
referred to as "cascading selection control," as in water cascading over a series of water falls.

"Enter your grade percentage"
GET Score

PUT "Your letter grade is "

Score >= 90

PUT "A"¶ Score >= 80

PUT "B"¶ Score >= 70

PUT "C"¶ Score >= 60

PUT "D"¶ PUT "F"¶

NoYes

NoYes

NoYes

NoYes

GPA < 3.0

 orry, you did not make the Dean's list."¶ PUT "Congratulations for making the Dean's list!"¶

NoYes

 6 of 15

Loop (Iteration) Control
A Loop (iteration) control statement allows you to repeat one or more
statements until some condition becomes true. This type of control
statement is what makes computers so valuable. A computer can
repeatedly execute the same instructions over-and-over again without
getting bored with the repetition.

One ellipse and one diamond symbol is used to represent a loop in
RAPTOR. The number of times that the loop is executed is controlled
by the decision expression that is entered into the diamond symbol. During execution, when the
diamond symbol is executed, if the decision expression evaluates to "no," then the "no" branch is
taken, which always leads back to the Loop statement and repetition. The statements to be
repeated can be placed above or below the decision diamond.

To understand exactly how a loop statement works, study
the example RAPTOR program to the right and notice the
follow things about this program:

• Statement 1 is executed exactly once before the
loop (repetition) begins.

• Statement 2 will always be executed at least once
because it comes before the decision statement.

• If the decision expression evaluates to "yes," then
the loop terminates and control is passed to
Statement 4.

• If the decision expression evaluates to "no," then
control passes to Statement 3 and Statement 3 is
executed next. Then control is returned back up to
the Loop statement which re-starts the loop.

• Note that Statement 2 is guaranteed to execute at
least once. Also note that Statement 3 is possibly
never executed.

There are too many possible executions of this example
program to list them all, but a few of the possibilities are
listed in the following table. Make sure you can fill in the
fourth column with the correct pattern.

Start

Statement1 ← ""

Statement2 ← ""

1=2

Statement3 ← ""

Statement4 ← ""

End

Yes

No

Loop

Statement1

Statement2

Statement3

Statement4

Decision

 7 of 15

Possibility 1 Possibility 2 Possibility 3 Possibility 4
Statement 1
Statement 2
Decision ("yes")
Statement 4

Statement 1
Statement 2
Decision ("no")
Statement 3
Statement 2
Decision ("yes")
Statement 4

Statement 1
Statement 2
Decision ("no")
Statement 3
Statement 2
Decision ("no")
Statement 3
Statement 2
Decision ("yes")
Statement 4

(do you see the
pattern?)

In the RAPTOR example above, "Statement2" could be removed, which means that the first
statement in the loop would be the "Decision" statement. Or "Statement2" could be a block of
multiple statements. In either case the loop executes in the same way. Similarly, "Statement3"
could be deleted or be replaced by multiple statements. In addition, any of the statements above
or below the "Decision" statement could be another loop statement! If a loop statement occurs
inside a loop, we called these "nested loops."

It is possible that the "Decision" statement never evaluates to "yes." In such a case you have an
"infinite loop" that will never stop repeating. (If this ever happens, you will have to manually
stop your program by selecting the "stop" icon in the tool bar.) You should never write
statements that create an infinite loop. Therefore, one (or more) of the statements in the loop
must change one or more of the variables in the "Decision" statement such that it will eventually
evaluate to "yes."

Input Validation Loops
One common use for a loop is to validate user input. If you want the user to input data that
meets certain constraints, such as entering a person's age, or entering a number between 1 and
10, then validating the user input will ensure such constraints are met before those values are
used elsewhere in your program. Programs that validate user input and perform other error
checking at run-time are called robust programs.

A common mistake made by beginning programmers is to validate user input using a selection
statement. This can fail to detect bad input data because the user might enter an invalid input on
the second attempt. Therefore, you must use a loop to validate user input.

The two example RAPTOR programs below validate user input. Hopefully you see a pattern.
Almost every validation loop that you write will include an input prompt, a decision, and an
output error message.

 8 of 15

Counting Loops
Another common use of a loop is to execute a block of code a
specific number of times. This type of loop is called a counter-
controlled loop because it requires a variable that "counts by
one" on each execution of the loop. Therefore, besides the loop
statement, a counter-controlled loop requires a "counter" variable
that is:

1. initialized before the loop starts,
2. modified inside the loop, and
3. used in the decision expression to stop the loop.

The acronym I.T.E.M (Initialize, Test, Execute, and Modify) can
be used to check whether a loop and its counter variable are
being used correctly.

An example of a count-controlled loop that executes exactly 100
times is shown to the right. As you study this example, please
notice the following important points:

• In this example, the "counter" variable is called "Count."
You can use any variable name, but try to make it
descriptive and meaningful for your current task.

• The "counter" variable must be initialized to its starting

value before the loop begins. It is common to start its
value at one (1), but you could have a loop that executes
100 times by starting at 20 and counting to 119. Try to
use a starting value that is appropriate for the problem
you are solving.

"Enter an integer between 1 and 10"
GET n

(n >= 1) and (n <= 10) and floor(n) = n

PUT "Invalid input, please try again"¶

Yes

No

Loop

Statements
to be

repeated

 9 of 15

• The decision expression that controls the loop should typically test for "greater than or
equal to." This is a safer test than just "equal to."

• A counter-controlled loop typically increments the counter variable by one on each

execution of the loop. You can increment by a value other than one, but this will
obviously change how many times the loop repeats.

The following three RAPTOR programs demonstrate common errors that should be avoided
when implementing loops. See if you can determine the error in each program. (If you can't find
the errors, they are explained in footnotes at the bottom of the page.) All three of these
problematic programs create an infinite loop – that is, a loop that never stops. To avoid writing
infinite loops, avoid these common errors.

1

2 3

The following example programs show the six (6) possible variations of a counter-controlled
loop. They all do the same thing -- they execute the statement(s) represented by the empty box
Limit number of times. You can use the variation that makes the most sense to you. In each
example, pay close attention to the starting (initial) value of Count and the Decision expression.

1 Count never gets modified and is always equal to 1.
2 Count is reset to 1 on every execution of the loop and therefore never becomes greater than 100.
3 The Decision expression will never evaluate to "yes"

 10 of 15

Count ← 1

Count > Limit

Count ← Count + 1

Yes

No

Loop

Count ← 0

Count >= Limit

Count ← Count + 1

Yes

No

Loop

Count ← 0

Count ← Count + 1

Count > LimitYes

No

Loop

Count ← 1

Count >= Limit

Count ← Count + 1

Yes

No

Loop

Count ← 1

Count ← Count + 1

Count > LimitYes

No

Loop

Count ← 0

Count ← Count + 1

Count >= LimitYes

No

Loop

 11 of 15

Input Loops
Sometimes you need a user to enter a series of values that you can process. There are two
general techniques to accomplish this. The first method is to have the user enter a “special”
value that signifies that the user is finished entering data. A second method is to ask the user, in
advance, how many values they will be entering. Then
that value can be used to implement a counter-controlled
loop. These two methods are depicted in the following
example programs. In both cases the empty boxes
signify where the entered data would be processed.
Don’t worry about how the data is processed, just look
at these examples to see how the user controls how
much data is entered.

"Running Total" Loops
Another common use of loops is to calculate the sum of a
series of data values, which is sometimes called a "running
total" or a "running sum." The example program to the
right produces a "running total" of a series of values entered
by a user.

To create a "running sum" you must add two additional
statements to a loop:

• An initialization statement, before the loop starts, that
sets a "running sum" variable to zero (0).
For example,
 Sum ← 0

• An assignment statement, inside the loop, that adds
each individual value to the "running sum" variable.

Sum ← 0

 ter you data value. Enter 0 to stop."
GET Value

Value = 0

Sum ← Sum + Value

PUT "The sum is " + Sum¶

Yes

No

Loop

 12 of 15

For example,
 Sum ← Sum + Value

Make sure you understand the assignment statement, Sum ← Sum + Value. In English it
says, calculate the expression on the right side of the arrow by taking the current value of Sum
and adding Value to it. Then place the result into the variable Sum.

The variable name, Sum, is not magic. Any variable name could be used, such as Total or
Running_Sum.

"Counting" Loops
Another common use of loops is for
counting the number of times an event
occurs. An example of this type of
program logic is shown to the right. Note
how similar this program is to the
previous example.

The last two examples demonstrate how
the same pattern of programming
statements occurs over and over again and
can be used to solve a variety of similar
problems. By studying and understanding
the simple examples in this reading you
will be able to use these examples as the
basis for solving additional, more
complex problems.

Number_positive ← 0

"Please enter you data value. Enter -999 to stop."
GET Value

Value = - 999

Value > 0

Number_positive ← Number_positive + 1

NoYes

PUT "You entered " + Number_positive + " positive values."¶

Yes

No

Loop

 13 of 15

Summary
In this reading we have covered how to write Selection and Loop statements in RAPTOR.
Selection statements are used when you need to execute some statements while skipping others.
Loop statements are used to repeat a block of statements. If you are having a difficult time
determining whether to use a Selection statement or a Loop, it might be helpful to ask yourself
the following questions:

Do you need to do something or not do something? (Selection)
Do you need to do one thing or another (but not both)? (Selection)
Do you need to do one of many different things? (Cascading Selection)
Do you need to do the same thing more than once? (loop)
Do you know how many times you must repeat something? (count-controlled-loop)

When developing Selection statements it is helpful to keep in mind the following questions:

Will the decision expression cause the correct statements to be executed?
Will the decision expression cause the correct statements to be skipped?

When developing Loops in your program it is helpful to keep in mind the following questions:

What statements do I need to repeat?
Have I initialized all variables correctly before the loop starts?
Will the Decision expression always evaluate to "Yes" at some time during execution?
If it is a counter-controlled loop, will it execute the correct number of times? (The most
common logic error in programming is an "off-by-one error," which means you want the
loop to execute N times, but it executes (N-1) or (N+1) times instead. Always check for
off-by-one errors as you are implementing your programs.)

 14 of 15

What you have hopefully learned…
• The ordering of programming statements is a key part of program development.

• There are 3 basic types of program flow: Sequential, Selection, and Loop (Iteration).

• Decision expressions, which evaluate to a "Yes"/"No" (true/false) value are used to

determine the path a program takes to its "next instruction."

• When to use Selection statements and/or Loop statements for a particular problem
solving task.

• Selection statements are used to execute or skip one or more programming statements.

• Loop statements are used when one or more programming statements must be repeated.

• The difference between "counter-controlled loops," "input loops," and "running total"

loops.

• Infinite loops are bad and special care should be used to make sure your loops always
terminate.

Reading Self-Check
Which control structure would be most appropriate for the following problems:
Sequential, Selection, Cascading Selection, or a Loop
____________ Printing an appropriate message for a cadet’s class year.
____________ Checking for a correct input and continually re-checking if incorrect.
____________ Computing the average GPA of your CS110 section.
____________ Determining the volume of a sphere given a radius.
____________ Initializing all of the variables at the beginning of a program.
____________ Determining whether a vowel, constant or digit has been typed in.
____________ Writing out a message if an integer variable contains a negative value.
____________ Writing “Odd” or “Even” depending on an integer variable’s value.
____________ Writing out the squares of the numbers 1 though 100.
____________ Reading in scores until a user enters a negative number.

Which of the following Decision expressions will always evaluate to "Yes", always evaluate to
"No", or could possibly be either "Yes" or "No"?

____________ GR_Score > 100 or GR_Score < 90.
____________ GR_Score > 100 and GR_Score < 90.
____________ GR_Score < 100 or GR_Score > 90.
____________ GR_Score < 100 and GR_Score > 90.

 15 of 15

Write a series of RAPTOR statements that determines if X has the value 1, 2, or 3, and prints
out “ONE”, “TWO”, or “THREE” accordingly.

Write a complete program that converts between degrees Fahrenheit and Celsius. The user must
first enter the conversion that is desired (F to C or C to F) using any means you want and then
enter the value to be converted. The formulas for conversion are:

F = 9/5 C + 32 and C = 5/9 (F – 32)

Write a complete program that plays the game of HI-LO. The program asks one user for a
number between 1 and 100 and verifies that such a number has been entered. It then asks a
second user for a guess and reads it in. If the guess is correct a congratulation message is
written to the screen and the program ends. Otherwise the message “HI” or “LOW” is displayed
(if the guess is higher or lower) and another guess is asked for and read in.

	Programming Control Structures
	Introduction
	Sequential Program Control
	Selection Control
	Decision Expressions
	Selection Control Examples
	Cascading Selection statements
	Loop (Iteration) Control
	Input Validation Loops
	Counting Loops
	Input Loops
	"Running Total" Loops
	"Counting" Loops
	Summary
	What you have hopefully learned…
	Reading Self-Check

