
49

Inheritance

50

Inheritance
Definitions

= way of forming new classes based on existing ones

= way to share/reuse code between two or more classes

Terminology

� superclass: Parent class being inherited from / extended / specialized.

� subclass: Child class that inherits behavior from superclass.

• gets a copy of every field and method from superclass

� is-a relationship: Each object of the subclass also "is a(n)" object of the

superclass and can be treated as one.

51

Inheritance syntax
public class NameofSubClass extends NameOfSuperclass

{

Example

public class Lawyer extends Employee {

...

}

By extending Employee, each Lawyer object now:

� receives a copy of each method / field from Employee automatically

� can be treated as an Employee by client code

� Lawyer can also replace ("override") behavior from Employee.

52

Let’s look more into Overriding

Definition

� To write a new version of a method in a subclass that replaces the

superclass's version

� No special syntax required to override a superclass method.

Just write a new version of it in the subclass.

public class Lawyer extends Employee {

// overrides getVacationForm in Employee class

public String getVacationForm() {
return "pink";

}
...

}

53

Let’s look more into Overriding

Definition

� To write a new version of a method in a subclass that replaces the

superclass's version

� No special syntax required to override a superclass method.

Just write a new version of it in the subclass.

public class Lawyer extends Employee {

// overrides getVacationForm in Employee class
@override

public String getVacationForm() {
return "pink";

}
...

}

https://stackoverflow.com/questions/94361/when-do-you-use-

javas-override-annotation-and-why

54

How do subclasses use superclass’
methods?

Subclasses’ methods may use superclasses’ methods/constructors:

super.method(parameters) // method

super(parameters); // constructor

public class Lawyer extends Employee {

public Lawyer(String name) {

super(name);
}

// give Lawyers a $5K raise (better)
public double getSalary() {

double baseSalary = super.getSalary();
return baseSalary + 5000.00;

}

}

55

How do Subclasses use superclass’
fields?

Rules =

� Subclasses are not allowed to use superclass’ private fields

• i.e. Inherited private fields/methods cannot be directly accessed by subclasses

• aka The subclass has the field, but it can't touch it

public class Employee {

private double salary;

...

}

public class Lawyer extends Employee {

...

public void giveRaise(double amount) {

salary += amount; // error; salary is private

}

}

?
How can we allow
subclasses to access /
modify these fields?

56

Solution = Protected fields/methods

protected fields or methods may be seen/called only by:

� the class itself, its subclasses, other classes in same "package"

Syntax
protected type name; // field

protected type name(type name, ..., type name) {

statement(s); // method

}

Example
public class Employee {

protected double salary;

...

}

57

Inheritance and constructors

Problem

� IF we replace our constructor w/o parameters w/ a

constructor that requires parameters in Employee

� THEN our subclasses do not compile;

Lawyer.java:2: cannot find symbol

symbol : constructor Employee()

location: class Employee

public class Lawyer extends Employee {

^

Solution

� IF we write a constructor (that requires parameters) in the superclass

� THEN must now rewrite constructors for our employee subclasses

58

Let’s dig a bit deeper on this…

Rules = Constructors are not inherited

� Subclasses don't inherit the Employee(int) constructor.

� Subclasses receive instead a default constructor that contains:

public Lawyer() {

super(); // calls Employee() constructor

}

But our Employee(int) replaced the default Employee().

� The subclasses' default constructors are now trying to call a non-

existent default Employee constructor.

59

How do we refer to the superclass
constructors?

Syntax

super(parameters);

Example

public class Lawyer extends Employee {

public Lawyer(int years) {

super(years); // calls Employee c'tor

}

...

}

Rules – The super call must be the first statement in the constructor

