
60

Polymorphism

61

Polymorphism

Definition

Ability for different types of objects to feature their own version of a

method – i.e. name + return type + parameters – which each behave

differently

Replaces a switch on the object’s type � Pseudo Code

switch(o.type){

case Employee: o.work(); break;

case Lawyer: o.sue(); break;

case Secretary: o.report(); break;

}

62

Rules to work w/ polymorphism

� A variable of type T can hold an object of any subclass of T.

• E.g Employee ed = new Lawyer();

• ed � Lawyer

• ed � LegalSecretary

� You can call any methods from the Employee class on ed.

� When you do, it uses the overridden version, if any, in order to

behaves as the subclass; e.g. Lawyer

System.out.println(ed.getSalary()); // 50000.0

System.out.println(ed.getVacationForm()); // pink

63

Example – Polymorphism and arrays

Arrays of superclass types can store any subtype as elements.

public static void main(String[] args) {

Employee[] e = {new Lawyer(), new Secretary(),

new Marketer(), new LegalSecretary()};

for (int i = 0; i < e.length; i++) {

System.out.println("pay : " + e[i].getSalary());

System.out.println("vdays: " + e[i].getVacationDays());

System.out.println();

}

}

Output:

pay : 50000.0 pay : 60000.0
vdays: 15 vdays: 10

pay : 50000.0 pay : 55000.0
vdays: 10 vdays: 10

?
Side note: What
does this look
like in memory?

64

Memory Diagram of Previous Example

Employee[] e = { new Lawyer(), new Secretary(),

new Marketer(), new LegalSecretary()};

e

Lawyer Object

Secretary Object

Marketer Object

LegalSecretary

Object

?
Everyone comfortable
with this representation?

65

Memory Diagram of Previous Example

Employee[] e = { new Lawyer(), new Secretary(),

new Marketer(), new LegalSecretary()};

e

Lawyer Object

Secretary Object

Marketer Object

LegalSecretary

Object

?
Everyone comfortable
with this representation?

Array object

66

Memory Diagram of Previous Example

Employee[] e = { new Lawyer(), new Secretary(),

new Marketer(), new LegalSecretary()};

e

Lawyer Object

Secretary Object

Marketer Object

LegalSecretary

Object

?
Everyone comfortable
with this representation?

Array object

67

Now… SO FAR we used only
Superclass methods on ed…

A variable can only call that type's methods, not a subtype's.

Employee ed = new Lawyer();

int hours = ed.getHours(); // ok; in Employee

ed.sue(); // compiler error

Java’s reasoning

= variable ed could store any kind of employee

not all kinds know how to sue

68

How do we use the subclass methods?

A variable can only call that type's methods, not a subtype's.

Employee ed = new Lawyer();

int hours = ed.getHours(); // ok; in Employee

ed.sue(); // compiler error

Java’s reasoning

= variable ed could store any kind of employee

not all kinds know how to sue

To use Lawyer methods on ed, we can type-cast it.

Lawyer theRealEd = (Lawyer) ed;

theRealEd.sue(); // ok

((Lawyer) ed).sue(); // shorter version

69

Things to be careful about…
• The code crashes if you cast an object too far down the tree.

Employee eric = new Secretary();

((Secretary) eric).takeDictation("hi"); // ok

((LegalSecretary) eric).fileLegalBriefs(); // error

// (Secretary doesn't know how to file briefs)

• You can cast only up and down the tree, not sideways.

Lawyer linda = new Lawyer();

((Secretary) linda).takeDictation("hi"); // error

• Casting doesn't actually change the object's behavior.

It just gets the code to compile/run.

((Employee) linda).getVacationForm() // pink

!

70

PopQuiz – Let’s get “Creative”

http://stackoverflow.com/questions/22874640/overriding-methods-

in-java-and-then-casting-object-to-parent-class-behavior

import java.util.*;

class A {

public String f(){return "A";}

}

public class B extends A {

public String f(){return "B";}

public static void main(String[] args){

B b = new B();

A a = (A) b;

System.out.println(a.f());

}

}

?
What’s
displayed?

!
B

