
83

Abstract Classes

84

Example – List classes
Suppose we have implemented the following two list classes:

� ArrayList

� LinkedList

� We have a List interface to indicate that both implement a List ADT.

� Some of their methods are implemented the same way (redundancy).

Problem

� Every time we modify one “copy” of that code, we need to update all
other versions – by hand!!!

index 0 1 2

value 42 -3 17

front

data next

42

data next

-3

data next

17

85

So… Limits of Interfaces

Our List Classes share some Common code

� add(value)

� contains

� isEmpty

BUT Interfaces do not hold code
?

How can we capture
this common behavior?

!
Inheritance to

the rescue!

86

So… Limits of Interfaces

Our List Classes share some Common code

� add(value)

� contains

� isEmpty

BUT Interfaces do not hold code
?

Should we change our
interface to a class?
Why / why not?

!
Tradeoff!

Free inheritance slot vs. factor code

87

Abstract classes

Definition – A hybrid between an interface and a class.

� Like a superclass may contain both

• method declarations (like an interface)

• and/or method bodies (like a class)

� Like an interface, may not be instantiated

(cannot use new to create any objects of their type)

What goes in an abstract class?

� implementation of common state and behavior that will be inherited

by subclasses (parent class role)

� declare generic behaviors that subclasses have to implement (interface

role)

88

Abstract class syntax

// declaring an abstract class

public abstract class name {

...

// declaring an abstract method

// (any subclass must implement it)

public abstract type name(parameters);

}

Rules
• A class can be abstract even if it has no abstract methods

• You can create variables (but not objects) of the abstract type

89

Example – abstract list class
// Superclass with common code for a list of integers.
public abstract class AbstractIntList implements List {

public void add(int value) {

add(size(), value);

}

public boolean contains(int value) {

return indexOf(value) >= 0;

}

public boolean isEmpty() {

return size() == 0;

}

}

public class ArrayIntList extends AbstractIntList { ...

public class LinkedIntList extends AbstractIntList { ...

90

Abstract vs. Normal Classes:
how do they implement interfaces

• Normal classes that claim to implement an interface must

implement all methods of that interface:

public class Empty implements List {} // error

• Abstract classes may claim to implement an interface without

implementing its methods; BUT subclasses must implement the

methods.

public abstract class Empty implements List {} // ok

public class Child extends Empty {} // error

91

Abstract classes vs. interfaces

Observation

• An abstract class can do everything an interface can do and more.

So…

� Why do both interfaces and abstract classes exist in Java?

Answer

� Java has single inheritance; i.e. one class may only extend only one

superclass

� BUT it may implement many interfaces

� Having interfaces allows a class to be part of a hierarchy

(polymorphism) without using up its inheritance relationship.

92

Abstract classes vs. Regular Classes

Observation

• Inheriting from an abstract class can do everything inheriting from a

regular class does and more.

So…

� Why do we have both mechanisms?

Answer

� Abstract classes force subclasses to implement some methods

• Unable to construct new object from an abstract class only

• Unable to compile a subclass of our abstract class if it is not implementing

all abstract methods

� As such they are a contract, like interfaces

93

Abstract classes vs. Regular Classes

Observation

• Inheriting from an abstract class can do everything inheriting from a

regular class does and more.

So…

� Why do we have both mechanisms?

Answer

� Wait…

� Since we allow abstract classes to not have any abstract methods…

then we could use these for everything!

• Not quite…

� Remember that an abstract class may not be instantiated! ☺

