
72

Interfaces



73

Example – Shapes
• Consider the task of writing classes to represent 2D shapes such as 

Circle, Rectangle, and Triangle.

• Certain operations are common to all shapes:

� perimeter: distance around the outside of the shape

� area: amount of 2D space occupied by the shape

� Every shape has these, but each computes them differently.



74

Let’s define area & perimeter
• Circle (as defined by radius r ):

area = π r 2

perimeter = 2 π r

• Rectangle (as defined by width w and height h ):

area = w h

perimeter = 2w + 2h

• Triangle (as defined by side lengths a, b, and c)

area = √(s (s - a) (s - b) (s - c))

where s = ½ (a + b + c)

perimeter = a + b + c 

r

w

h

a

b

c



75

What we want to code…
Suppose we have 3 classes Circle, Rectangle, Triangle.

� Each has the methods perimeter() and area()

We'd like our client code to be able to treat different kinds of shapes 

in the same way; e.g.,

� Write a method that prints any shape's area and perimeter.

� Create an array to hold a mixture of the various shape objects.

� Write a method that could return a rectangle, a circle, a triangle, or any 

other kind of shape.

� Make a DrawingPanel display many shapes on screen

BUT each class already subclass DrawableObject

Solution = Polymorphism! But we have only 1 shot at inheritance!



76

Interfaces to the rescue!!!
Definition

� A list of methods that a class promises to implement

� A contract in terms of what features / methods / behavior will be 

implemented

� Analogous to idea of roles / certifications:

• "I'm certified as a CPA accountant.

This assures you I know how to do taxes, audits, and consulting."

• "I'm 'certified' as a Shape, because I implement the Shape interface.

This assures you I know how to compute my area and perimeter."



77

How is this different from inheritance?

� Inheritance gives you an is-a relationship and code sharing

• A Lawyer can be treated as an Employee and inherits its code

� Interfaces give you an is-a relationship without code sharing

• A Rectangle object can be treated as a Shape but inherits no code

� You extend only 1 superclass but may implement many interfaces

� Interfaces only feature abstract methods

• i.e. header w/o implementation

• we want to allow each class to implement the behavior in its own way

� Interface only feature FINAL fields



78

Interface syntax
public interface name {

public type name(type name, ..., type name);

public type name(type name, ..., type name);

...

public type name(type name, ..., type name);

}

Example

public interface Vehicle {

public int getSpeed();

public void setDirection(int direction);

}



79

// Shape.java Describes features of all shapes

public interface Shape {

public double area();

public double perimeter();

}

Example – Shape interface



80

How do we Implement an interface?

public class name implements interface {

...

}

Definition

A class can declare that it "implements" an interface.

Example

public class Bicycle implements Vehicle {

...

}



81

What if we implement an interface w/o 
providing code?

public class Banana implements Shape {

// haha, no methods! pwned

}

If we write a class that claims to be a Shape but doesn't implement 
area and perimeter methods, it will not compile.

Banana.java:1: Banana is not abstract and does 

not override abstract method area() in Shape

public class Banana implements Shape {

^



82

Interfaces + polymorphism?

Yes. 

Interfaces allow polymorphism

(the same code can work with different types of objects)

public static void printInfo(Shape s) {

System.out.println("The shape: " + s);

System.out.println("area : " + s.area());

System.out.println("perim: " + s.perimeter());

System.out.println();

}

...

Circle circ = new Circle(12.0);

Triangle tri = new Triangle(5, 12, 13);

printInfo(circ);

printInfo(tri);


