

Let’s play a bit...

//Quick Reminder on Polymorphism

Object someObject = new Object();
Integer someInteger = new Integer (10);
someObject = somelnteger; // OK since Integer is-a Object

// Integer is—-a Number so we can go further..

public void someMethod (Number n) { /* ... */ }
someMethod (new Integer (10)); // OK
someMethod (new Double (10.1)); // OK

// Same w/ Generics! Well.. Kinda...

Box<Number> box = new Box<Number> () ;
box.add (new Integer (10)); // OK
box.add (new Double(10.1)); // OK

// Integer / Double are alright since both inherit from Number

Now, let’s consider the following...

public void boxTest (Box<Number> n) { /* ... */ }

Are Box<Integer>and ' Nope, these are not allowed
Box<Double> suitable as data m VYes, the clue was misleading
types for the argument? R s g

Think about
Polymorphism...

44

Here are some rules to
keep in mind...

Number
1
Integer

Given two concrete types A and B
MyClass<A> has no relationship to
MyClass, regardless of whether
A and B do
Common parent of MyClass<A> and |
MyClass is Object Box<Numbers

‘ Box<Integer>

45

However... e.g. Java Collections Classes

Collection<String>

List<String >

ArraylList<String=

So long as you do not vary the

/ type argument...

the subtyping relationship is
preserved between the types 4

New Requirements!

Let’s extend a List<E> interface
so that it integrates a 2"9 Type
Parameter P

interface PayloadList<E, P> extends List<E> {
vold setPayload(int index, P wval);

47

New Requirements!

The following parameterizations of PayloadList are subtypes of List<String>;

PayloadList<String, String>

PayloadList<String, Integer> Collection<String>
PayloadList<String, Exception> T
List<String:

| TU |

PayloadList<String, String: PayloadList<String, Integers PayloadList<String, Exception:

48

