

What are collections?

A collection — sometimes called a
container — is simply an object that
groups multiple elements into a single
unit

The most generic
“collection” of elements

Collections are used to store, retrieve,
manipulate, and communicate
aggregate data

A collections framework is a unified
architecture for representing and
manipulating collections which contain
the following 3 components;

‘“,\ Interfaces

* abstract data types that represent collections

* allow collections to be manipulated independently of the
details of their representation

e generally form a hierarchy

Collection Map

Set List Queue Deque SortedMap

SortedSet

“‘L Implementations

* concrete implementations of the collection interfaces;
* j.e. reusable data structures

‘““3 Algorithms

* reusable functionality / methods on objects that implement
collection interfaces

* polymorphic: 1 method for many different implementations of
collection interface

Using Constructors to convert collections

// create & populate a List / Set / Collection
Collection<String> c = new ..

// Java SE 7 & sooner

List<String> list = new ArraylList<String>(c);

// Java SE 8 “diamond” operator

List<String> list = new ArrayList<>(c);

10

Available Methods — basic stuff

int
boolean
boolean

Iterator<kE>

boolean

boolean

size ()

1sEmpty ()

contains (Object-¢eélement)

lterator ()

add (E element)

remove (Object element)

/

We'll talk more about this

one in next slides

Alright with both
collections that allow or
do not allow duplicates
Makes sure the element
is removed

Returns true if the
collection was modified

11

Why does remove() return a Boolean?

// remove all instances of an element
while (col.remove (anObject));

// e.g. remove all null elements
while (col.remove (null));

__..._}\

// Allows to simplify this...
for (Object obj : col) {
if(obj != null){

doSomethingWithObject (ob7j) ;
}
}

// ...with this...
while (col.remove (null));

for (Object obj : col) {

doSomethingWithObject (obj) ;

}

EI Sta[:k https://stackoverflow.com/questions/18895124/why-

ﬂverfluw does-java-util-collection-remove-return-a-boolean

12

__.._}\

Why does add() return a Boolean?

AmrayS? // we could do these checks by hand..
* Not really useful if (!set.contains (item)) {
set.add (item) ;
itemWasAdded (item) ;
Sets? }

e Flement might a|ready be inthere // - but the version below.
1f (set.add(item)) {

itemWasAdded (item) ;
Bounded Collections }

: : .. is both shorter AND thread-safe!!!
* Collection might be full // 1s both shorter read-safe

EIStaCk https://stackoverflow.com/questions/24173117/why-does-list-

overfl

u.w adde-return-boolean-while-list-addint-e-returns-void

13

Available Methods — whole collections

returns true if target Collection
contains all of the elements in col

adds all of the elements in col to
target Collection

Returns true if collection was
modified

removes from target Collection all
elements also in col

Returns true if collection was
modified

i.e. retains only those elements in
target Collection that are also in col
Returns true if collection was
modified

boolean containsAll (Collection<?> col)

\‘boolean addAll (Collection<? extends E> col)

boolean removeAll (Collection<?> col)

boolean retainAll (Collection<?> col)

/mid clear ()

removes all elements from the
Collection

14

Available Methods — Array Conversions

Object[] a = c.toArray(); // simple form
String[] a = c.toArray(new String[0]):;
//Returned array has type of parameter array

IF list fits in array specified as parameter
THEN it is returned therein

IF size(array parameter) > size(list)

THEN array element immediately following end of collection is set to null
ELSE return new array w/ runtime type of the parameter array and w/ size of list

s

I@I' tutorialspoint hitp://www.tutorialspoint.com/java/util/arraylist toarray.htm

EEEEEEEEEEEEEEEEEE

15

How to traverse Collections — 3 ways

#1 — Aggregate Operations
* Not now
* When we learn about functional programming

#2 — For-each

H#H3 — Iterators

10 Be

FNNTINIED....

16

‘““L How to traverse Collections — ForEach

// Prepare for some VERY intricate Java stuff..

for (Object o : collection) {

System.out.println (o) ;

} e AKA Enhanced For Loop

* Do not confuse with forEach() method we
will study when we look at Streams

17

‘“,‘3 How to traverse Collections — lterators

// this 1s what the iterator interface offers

* returns true if iterator
public interface Iterator { has more elements
boolean hasNext () ;
E next (); . ———] |* returnsthe next element

vold remove(); //optional in the iteration

} \
 Removes last element returned by next()

* It may be called only once per call to next
 Throws an exception if this rule is violated

* lterator = only safe way to modify a collection during iteration
e Behavior is unspecified if the underlying collection is modified in any

other way while the iteration is in progress 18

Example of [terator-based
Collection Filter

static voild filter (Collection<?> c) {
for (Iterator<?> 1t = c.iterator(); 1t.hasNext();) {
1f (!cond(it.next())) {

i1t.remQve () ;

e Whatever conditions based
} on which you want to filter
elements out

19

When should | use an Iterator vs. ForEach?

1. Do you ever need to remove the current element?

 for-each construct hides the iterator, so you cannot call remove(...)
 Therefore, the for-each construct is not usable for filtering

2. Do you need to Iterate over multiple collections in parallel?

 More about this when we discuss concurrent programming

U BE

FNNTINIED....

Simple example of when things may go @

DONTTRY THIS AT HOME!

Vs s

They say don't try this at home

So I'm going to my friend's house to try it!

Simple example of when things may go wrong

public class IterationsGoneWrong{

public static void main (String[] args) {
Integer|[] data = {1,1,1,1,1};

ArrayList<Integer> myList = new ArrayList<>(Arrays.asList (data));

removeDuplicate (myList) ; NOTE
This slide uses a bit of

System.out.print ("The distinct integers are "); .
. . ArrayList syntax from
for (int number: myList) { .
System.out.print (number + " "); the next section

}

Side Note — Why using both the ' ...asList() returned does not

m constructor and asList()] allow add / rm but writes
through to the ArraylList object

Do not mix .remove() and index-based accessing

public static void removeDuplicate (ArraylList<Integer> list) {

for (int 1=0;i<list.size();1i++) {
for (int n=0; n<list.size(); n++) {

System.out.println("Inner loop; 1 = "+ 1
+ 1A n — 1A +n
+ " array = " + list);

if (n!=1) {
1f (list.get(n)==list.get (1)) {
list.remove (n) ;
System.out.println ("removed "+n + " array = " + list);

Inner loop; 1 =

Punch it... Inner loop; i =

removed 1 array
Inner loop; i =

o O

|_\
I~

removed 2 array
Inner loop; i =

|
|_\
I~

removed 0 array
Inner loop; 1 =1
The distinct integers

n
n
= [
0 n
[
n
[
n

1,

for (int 1=0;i<list.size () ;i++)
for (int n=0; n<list.size(); n++) {

System.out.println("Inner loop; 1 = "+ 1
+ " n = "4n
+ " array = " + list);

if (n!=1)
1f (list.get(n)==list.get (1)) {
list.remove (n) ;
System.out.println ("removed "+n + " array = " + list);

