
List Range Views

...

41

Range-View Operations

subList(int fromIndex, int toIndex)

• returns a List view of portion of this list

• w/ indices in [fromIndex..toIndex[

• This half-open range mirrors the typical for loop; e.g.,

for (int i = fromIndex; i < toIndex; i++) { ... }

42

!
Please note

• returned List is backed up by the original List

• so changes in the former are reflected in the latter

What are Range-View Operations good for?

Eliminate need for explicit range operations

• Any operation that expects a List can be used as a range operation

• Any polymorphic algorithm that operates on a List works with subLists

• How? � Just pass subList view instead of whole List

� myMethod(someList.subList(fromIndex, toIndex));

43

Examples

// Remove a range of elements from a List?

list.subList(fromIndex, toIndex).clear();

// Search for an element in a range?

int i = list.subList(fromIndex, toIndex).indexOf(o);

int j = list.subList(fromIndex, toIndex).lastIndexOf(o);

44

!
These idioms return the index of the found element in
the subList, not the index in the backing List

?
So…

How would you…

Example – Dealing a handsize
of cards from a deck

45

java Deal 4 5
[8 of hearts, jack of spades, 3 of spades, 4 of spades, king of diamonds]

[4 of diamonds, ace of clubs, 6 of clubs, jack of hearts, queen of hearts]

[7 of spades, 5 of spades, 2 of diamonds, queen of diamonds, 9 of clubs]

[8 of spades, 6 of diamonds, ace of spades, 3 of hearts, ace of hearts]

Method to deal a
hand from a deck

public static <E> List<E> dealHand(List<E> deck, int n) {

int deckSize = deck.size();

List<E> handView = deck.subList(deckSize - n, deckSize);

// copy selected elements

List<E> hand = new ArrayList<E>(handView);

// removes selected elements from deck

handView.clear();

return hand;
}

46

Let’s now make a deck then
use our dealHand(…) method

public class Deal {

public static void main(String[] args) {

if (args.length < 2) {

System.out.println("Usage: Deal hands cards");

return;
}

// Parse CLI arguments

int numHands = Integer.parseInt(args[0]);

int cardsPerHand = Integer.parseInt(args[1]);

47

Preparing the deck

// Make a normal 52-card deck
String[] suit = new String[] {

"spades", "hearts",
"diamonds", "clubs"

};

String[] rank = new String[] {
"ace", "2", "3", "4",
"5", "6", "7", "8", "9", "10",
"jack", "queen", "king"

};

List<String> deck = new ArrayList<String>();

for (int i = 0; i < suit.length; i++)
for (int j = 0; j < rank.length; j++)

deck.add(rank[j] + " of " + suit[i]);

48

Last but not least;
shuffle & deal!

// Shuffle the deck

Collections.shuffle(deck);

if (numHands * cardsPerHand > deck.size()) {

System.out.println("Not enough cards.");

return;

}

// use dealHand method…

for (int i = 0; i < numHands; i++)

System.out.println(dealHand(deck, cardsPerHand));

} // end of class Deal
49

Be careful when using subList(…)

• Semantics of returned List = undefined if elements are
added to, or removed from, the backing List in any way
other than via the returned List

• It is legal to modify a sublist of a sublist and to continue
using the original sublist (though not concurrently)

50

!

Be careful when using subList(…)

ADVICE = Use subList only as a transient object

• i.e. to perform one or a sequence of range operations on the
backing List

• The longer you use it � the greater the probability to compromise it

E.g. by modifying the backing List directly

E.g. by modifying it through another subList object

51

!

Objects Ordering

…

52

How to sort a Collection?

A List may be sorted as follows;

Collections.sort(myList);

Default orders that are used make sense;

53

List consists of Objects of class… sorted into

String alphabetical order

Date chronological order

… …

How to make a Collection Sortable?

Implement the Comparable Interface

• We sort with � Collections.sort(list)

• Elements of which do not implement Comparable, will throw
a ClassCastException

Provide a Comparator object

• We sort with � Collections.sort(list, comparator)

• Throws ClassCastException if elements cannot be compared to
one another using the comparator 54

Objects Ordering

Implementing the Comparable Interface

55

C
la

ss
e

s
im

p
le

m
e

n
ti

n
g

 t
h

e

C
o

m
p

a
ra

b
le

 I
n

te
rf

a
ce

Class Natural Ordering

Byte Signed numerical

Character Unsigned numerical

Long Signed numerical

Integer Signed numerical

Short Signed numerical

Double Signed numerical

Float Signed numerical

BigInteger Signed numerical

BigDecimal Signed numerical

Boolean Boolean.FALSE < Boolean.TRUE

File System-dependent lexicographic on path name

String Lexicographic

Date Chronological

CollationKey Locale-specific lexicographic
56

Writing your own Comparable Objects

public class Name implements Comparable<Name> {

private final String firstName, lastName;

public String firstName() { return firstName; }
public String lastName() { return lastName; }

57

• Name objects are immutable

• Recommended for objects that will be used as elements

in Sets or as keys in Maps

• These collections will break if you modify their elements

or keys while they're in the collection

Writing your own Comparable Objects

public Name(String firstName, String lastName) {

if (firstName == null || lastName == null)

throw new NullPointerException();

this.firstName = firstName;

this.lastName = lastName;

}

58

• The constructor checks its arguments for null

• ensures that all Name objects are well formed so

that none of the other methods will ever throw a

NullPointerException

DIY Comparables

public int hashCode() {

return 31*firstName.hashCode() + lastName.hashCode();

}

public String toString() {

return firstName + " " + lastName;

}

59

• hashCode(…) redefined

• Essential for any class that redefines equals(…)

• Rules = equals(…) objects � equal hash codes

• toString(…) redefined

• collections' toString(…) depend on toString(…) of

their elements, keys, and values

DIY Comparables

public boolean equals(Object o) {

if (!(o instanceof Name))

return false;

Name n = (Name) o;

return n.firstName.equals(firstName)

&& n.lastName.equals(lastName);

}

60

• returns false if the specified object is null

or of an inappropriate type

• required by the general contracts of this

method

DIY Comparables

public int compareTo(Name n) {

int lastCmp = lastName.compareTo(n.lastName);

return (lastCmp != 0

? lastCmp

: firstName.compareTo(n.firstName));

}

61

• throws ClassCastException at runtime if specified

object may not be compared to this

• required by the general contracts of this method

Let’s use this class

public class NameSort {

public static void main(String[] args) {

Name nameArray[] = {

new Name("John", "Smith"),
new Name("Karl", "Ng"),
new Name("Jeff", "Smith"),
new Name("Tom", "Rich")

};

List<Name> names = Arrays.asList(nameArray);

Collections.sort(names);

System.out.println(names);

}

} 62

[Karl Ng, Tom Rich, Jeff Smith, John Smith]

Objects Ordering

Using Comparators

63

Comparing w/ Comparators

What if you want to sort objects…

• …in an order other than their natural ordering?

• …that don't implement Comparable?

Introducing… the Comparator

• It is an object that encapsulates an ordering

• Features single compare(…) method that returns <0 / 0 / >0

IF either arguments has an inappropriate type

THEN throws ClassCastException

64

Example

public class Employee implements Comparable<Employee> {

public Name name() { ... }

public int number() { ... }

public Date hireDate() { ... }

...

}

65

Example
public class EmpSort {

static final Comparator<Employee> SENIORITY_ORDER

= new Comparator<Employee>() {
public int compare(Employee e1, Employee e2) {

return e2.hireDate().compareTo(e1.hireDate());
}

};

// Employee database

static final Collection<Employee> employees = ... ;

public static void main(String[] args) {

List<Employee> e = new ArrayList<Employee>(employees);
Collections.sort(e, SENIORITY_ORDER);
System.out.println(e);

}
} 66

Problems with this comparator

SENIORITY_ORDER = new Comparator<Employee>() {

public int compare(Employee e1, Employee e2) {

return e2.hireDate().compareTo(e1.hireDate());

}

};

67

?
Take another look at our
implementation so far…

!
E1.equals(e2) returns true

does not mean that

compare(e1,e2) returns 0

Fixing our Example

static final Comparator<Employee> SENIORITY_ORDER

= new Comparator<Employee>() {

public int compare(Employee e1, Employee e2) {

int dateCmp = e2.hireDate().compareTo(e1.hireDate());

if (dateCmp != 0)

return dateCmp;

return (e1.number() < e2.number()

? -1

:(e1.number() == e2.number()

? 0

: 1));
}

}; 68

Algorithms

69

What are Java Framework Algorithms?

• Polymorphic algorithms = pieces of reusable functionality

• All = static methods from the Collections class whose 1st
argument is the collection on which the operation is to be
performed

• Generally operate on List instances, but a few of them
operate on arbitrary Collection instances

70

Overview of List Algorithms

Name Description

sort sorts a List using a merge sort algorithm, which provides a fast, stable

sort. (A stable sort is one that does not reorder equal elements.)

shuffle randomly permutes the elements in a List

reverse reverses the order of the elements in a List

rotate rotates all the elements in a List by a specified distance

swap swaps the elements at specified positions in a List

71

Overview of List Algorithms

Name Description

replaceAll replaces all occurrences of one specified value with another

fill overwrites every element in a List with the specified value

copy copies the source List into the destination List

binarySearch searches for an element in an ordered List using the binary

search algorithm; aka dichotomic search algorithm

indexOfSubList returns the index of the first sublist (in first

parameter List) that is equal to the second parameter List

lastIndexOfSubList as above but returns the index of the last sublist

72

Overview of Collection-Level Algorithms

Name Description

addAll • adds all the specified elements to a Collection

• elements to be added may be specified individually or as an

array

frequency counts the number of times the specified element occurs in the

specified collection

disjoint determines whether two Collections are disjoint;

i.e., whether they contain no elements in common

min Self-explanatory

max Self-explanatory

73

Let’s take a closer look at Collections.sort(…)

sort(…) uses a slightly optimized merge sort algorithm;

Fast

• n log(n) time, substantially faster on nearly sorted lists

• Empirically shown to be as fast as a highly optimized quicksort

• quicksort is generally faster but isn't stable and doesn't guarantee n log(n)
performance

Stable

• It doesn't reorder equal elements

• Important if you sort the same list repeatedly on different attributes 74

Example – Sorting Based on Comparable

public class Sort {

public static void main(String[] args) {

List<String> list = Arrays.asList(args);

Collections.sort(list);

System.out.println(list);

}

}

75

java Sort i walk the line

[i, line, the, walk]

We rely on String elements

being Comparable

Example – Sorting based on Comparator

// Make a List of all anagram groups above size threshold

List<List<String>> winners = new ArrayList<List<String>>();

for (List<String> l : m.values())

if (l.size() >= minGroupSize)

winners.add(l);

// Sort anagram groups according to size

Collections.sort(winners, new Comparator<List<String>>() {

public int compare(List<String> o1, List<String> o2) {

return o2.size() - o1.size();

}}

);
76

!
See details in map tutorial
For now, focus on
comparator only

