oocker

#Hdockertour "

Docker

December 2014—Docker 1.4 &

docker

Jérome Petazzoni
(@)petazzo)

 Grumpy French DevOps

- Go away or | will replace you
with a very small shell script

* Runs everything in containers
- VPN, firewalls
- KVM, Xorg
— Docker

Let's start with

Questions

Raise your hand if you have ...

* Tried Docker (online tutorial)

Raise your hand if you have ...

* Tried Docker (online tutorial)
* Tried the real Docker (e.g. deployed remote VM)

-
docker

Raise your hand if you have ...

* Tried Docker (online tutorial)
* Tried the real Docker (e.g. deployed remote VM)
* |[nstalled Docker locally (e.g. with boot2docker)

&

docker

Raise your hand if you have ...

* Tried Docker (online tutorial)

* Tried the real Docker (e.g. deployed remote VM)
* |[nstalled Docker locally (e.g. with boot2docker)

» Written a Dockerfile (and built it!)

&
N

docker

Raise your hand if you have ...

* Tried Docker (online tutorial)

* Tried the real Docker (e.g. deployed remote VM)
* |[nstalled Docker locally (e.g. with boot2docker)

» Written a Dockerfile (and built it!)

* An image on Docker Hub (pushed or autobuilt)

&
N

docker

Raise your hand if you have ...

* Tried Docker (online tutorial)

* Tried the real Docker (e.g. deployed remote VM)
* |[nstalled Docker locally (e.g. with boot2docker)

» Written a Dockerfile (and built it!)

* An image on Docker Hub (pushed or autobuilt)

» Deployed Docker images for dev/QA/test/prod...

&
N

docker

Agenda

* Where we come from

* \What is Docker and Why it matters
 \What are containers

* The Docker ecosystem

* Developing with Docker

-
docker

from dotCloud
to Docker

dc ker

What is dotCloud?

» Platform-as-a-Service

e Deploy with g1t clone && dotcloud push
« Compares to Heroku

 First « polyglot » PaaS ever (yay!)

 Built on top of LXC and AUFS

» Custom kernels (2.6.38+setns+grsec+aufs+fixes)

&
N

docker

What is dotCloud?

» Platform-as-a-Service

e Deploy with g1t clone && dotcloud push

« Compares to Heroku

 First « polyglot » PaaS ever (yay!)

 Built on top of LXC and AUFS

» Custom kernels (2.6.38+setns+grsec+aufs+fixes)

&

docker

dotCloud from 30,000ft above

* Micro-services architecture (100+ services)
- git, hg, rsync repositories

— builders for different languages
(Python, Ruby, PHP, Java, Node.js, Perl, ...)

- different data stores
(MySQL, PostgreSQL, Redis, MongoDB...)

- TCP port mappers, HTTP load balancers
(switched from Nginx to custom Hipache)

- and of course: billing, users, metrics, logging...

&

docker

dotCloud container management

 Some platform-wide services
 Some per-host components:

— containers, builder, deployer, hostinfo, oomkn,
metrics, diskwatcher, unfreezer...

» Simple scheduling service

— distributed, lock-based, non-deterministic, single-
resource, bin-packing algorithm

&
N

docker

The problem

» Containers are handled by multiple components
* Locking abounds

* More time spent to debug concurrency issues,
than implementing features (sometimes)

» Container management code cannot be in a container

» Different deployment mechanisms for customer code
and for platform code

&
N

docker

The solution

* One daemon to manage them all
* No concurrent access, no locking, no problem

« Simple code with less dependencies
(easier deployment)

&

docker

Docker is born!

» docker.py
* (not to be confused with today's docker-py)

&5

docker

Can we do better?

e |t's Python
* |t's not Ruby
* |[t's easy to install, but can we make it easier?

&

docker

Thoughts...

» Let's redo it in Ruby!

» But then it won't be Python (duh!)

* \We can't even Ruby

* WWe don't want our engineering team to quit

* Deployment of Ruby code is just as bad as
deployment of Python code anyway

&
N

docker

Thoughts...

e Let's redo it in Node.js!
 Bad cultural/technical fit

* Deployment of Node.|s code is just as bad as
deployment of Python code anyway

-
docker

Thoughts...

e Let's redo it In Java!
e C'est cela, oui...

&

docker

Golang

* |t's not Python

* |t's not Ruby

e It's not Java

* |[t's not Node.js

* [t compiles to a single, quasi-static binary

&

docker

Docker Is reborn!

* February 2013: private repo, with liberal access
(~200 people had access and helped to review,
contribute, give feedback, etc.)

 March 2013: Docker 0.1 released at PyCon
 Requires LXC, AUFS
» Works on Debian/Ubuntu kernels

&
N

docker

Stop.
Demo time.

dc ker

root@dockerhost: “# ||

Community response

« Five stars, pls code again »

First milestones

* 0.1.0 (2013-03-23), initial public release

* 0.2.0 (2013-04-23), automatic bridge setup

* 0.3.0 (2013-05-006), volumes

* 0.4.0 (2013-06-03), API, docker build

* 0.5.0 (2013-07-17), host volumes, UDP ports
* 0.6.0 (2013-08-22), privileged mode

&
N

docker

The road to 1.0

* 0.7.0 (2013-11-25), links, storage drivers
(AUFS, DM, VFS)

* 0.8.0 (2014-02-04), BTRFS, OSX CLI
* 0.9.0 (2014-03-10), native exec driver
* 0.10.0 (2014-04-08), TLS API support
* 0.11.0 (2014-05-07), SELinux, DNS links, --net

* 0.12.0 (2014-06-05), pause/unpause

docker

Life after 1.0

* 1.0.0 (2014-06-09), released at DockerCon
* 1.1.0 (2014-07-03), .dockerignore, logs --talil

« 1.2.0 (2014-08-20), auto-restart policies,
capability add/drop, fine-grained device access

« 1.3.0 (2014-10-14), docker exec, docker start

* 1.4.0 (2014-12-11), overlayfs

 |[n progress: volumes, composition, hosts

docker

Initial goals
VS
Docker now

Initial goals

» LXC container engine to build a PaaS

» Containers as lightweight VMs
(complete with syslog, cron, ssh...)

» Part of a bigger puzzle
(other parts: builders, load balancers...)

&

docker

Docker now

* Build, ship, and run any app, anywhere

&

docker

Say again?

» Build: package your application in a container

* Ship: move that container from a machine to another
* Run: execute that container (i.e. your application)

* Any application: anything that runs on Linux
 Anywhere: local VM, cloud instance, bare metal...

&

docker

&
N

docker

Dockerfiles

* Recipe to build a container
e Start FROM a base image

« RUN commands on top of it
 Easy to learn, easy to use

-
docker

FROM ubuntu:14.04

RUN apt-get update

RUN apt-get install -y nginx

RUN echo 'Hi, I am 1n your container!' \
>/usr/share/nginx/html/index.html

CMD nginx -g "daemon off;"

EXPOSE 80

docker build -t jpetazzo/web .

docker run -d -P jpetazzo/web
&

docker

root@dockerhost: “# ||

« docker build » goodness

» Takes a snapshot after each step
* Re-uses those snapshots in future builds

* Doesn't re-run slow steps (package install...)
when it is not necessary

&

docker

bk & L

Y
" Gk WiSE "

i
—_—

&
N

docker

Docker Hub

« docker push animage to the Hub
« docker pull thisimage from any machine

root@dockerhost: “# ||

Why does
this matter?

dc ker

g
Deploy reliably & consistently

OPS PROBLEM NOW

R e

W

Deploy reliably & consistently

* Images are self-contained, independent from host

* |f it works locally, it will work on the server

» With exactly the same behavior

* Regard
* Regard
» Regard

ess of versions
ess of distros
ess of dependencies

&
N

docker

Execution is fast and lightweight

e | et's start a few containers

root@dockerhost: “# ||

Execution is fast and lightweight

 Containers have no* overhead

- Lies, damn lies, and other benchmarks:

http://qgiita.com/syoyo/items/bea48de8d7c6d8c73435
http://www.slideshare.net/BodenRussell/lkvm-and-docker-Ixc-benchmarking-with-openstack

*For some definitions of « no » -

docker

Benchmark:
container creation

$ time docker run ubuntu echo hello world
hello world
real OmO.258s

Disk usage: less than 100 kB
Memory usage: less than 1.5 MB

&

docker

http://qiita.com/syoyo/items/bea48de8d7c6d8c73435
http://www.slideshare.net/BodenRussell/kvm-and-docker-lxc-benchmarking-with-openstack

| o
Benchmark:
infiniband throughput and latency

InfiniBand bandwidth performance InfiniBand latency performance
MB/s 3200 usec 5.00
k=
L ¥
2400 3.75 E
0
1600 . 2.50
£
T,
800 8 1.25 v
0 0
ib_read_bw ib_write_bw ib_read_lat ib_writa_lat
M Native W LXC(Docker container) M Native W LXC{Docker container)

docker

5.00E+09

4.50E+09

4.00E+09

3.50E+09

3.00E+09

2.50E+09

Memory Used

2.00E+09

1.50E+09

Benchmark:
booting OpenStack instances

Docker / KVM: Compute Node Memory Used (Unnormalized Overlay)

1.00E+09 -~

5.00E+08 -

0.00E+00

1 5 9 13 17 21 25 29 33 37 41 45 49 53

57 61 65 69 73 77 81 85 89 93 97 101105109113117121125

Time

e [/ T

e (] B3C K T

&

docker

MiB/s

Benchmark:
memory speed

Memory Benchmark Performance

14000
12881.6112905 .68

12000

10000

6000

4393.3 4395.92
3823.3 381338

2000 -

MEMCPY DUMB MCBLOCK
Memaory Test

¥ Bare Metal (MIB/s)
B docker (MIB/s)
= KV (MIB/s)

&2

docker

Is there really
no overhead at all?

 Processes are isolated,
but run straight on the host

» Code path in containers
= code path on native

« CPU performance
= native performance

 Memory performance
= a few % shaved off for (optional) accounting

* Network and disk I/O performance
= small overhead; can be reduced to zero

&

docker

If it runs on Linux,
It will run in Docker

* Web apps

 API backends

» Databases (SQL, NoSQL)
* Big data

 Message queues

e ... and more

&

docker

If it runs on Linux,
It will run in Docker

* Firefox-in-Docker

» Xorg-in-Docker

* VVPN-Iin-Docker

* Firewall-in-Docker
* Docker-in-Docker

« KVM-in-Docker

&

docker

SOIPUTA IlI]BI[Eﬂ IH HLIl OCKER
CINAVMINA DOCKER ON YOUR SERVER

||||||||||| TIEIR!

anywhere

dc ker

Deploy anywhere

e Linux servers
e \/Ms or bare metal
e Any distro

» Kernel 3.8+
(or 2.6.32 that comes with RHEL/CentOS 6.5)

+ Intel 64 bits (x86_64)

&

docker

Deploy &i=est anywhere

Docker.exe
Docker Client enes.

docker images

Windows Server

Docker Engine Docker Engine Docker Remote AP

Examples:
(Daemon) (Daemon) GET /images/json
POST /containers/create
Windows Server Linux Container

Container Support Support (LXC)

Deploy anywhere

« Some people run Docker on:

- Intel 32 bits

- ARM 32 and 64 bits

- MIPS

- Power8

— Older kernels (please don‘t)

* Note: the Docker Hub registry is not arch-aware
(yet!) so you will need to find your own base images.

&

docker

Docker can help ...

o |f it works on my machine, it works on the cluster

» Shrinkwrap code and data for future reuse (recomputability)
« Small but durable recipes (#VM images)

* Never again:

- juggle with 3 different, incompatible Fortran compilers

- wave dead chickens to get that exotic lib to link with IDL

- figure out which version of LAPACK works with that code
- ... and what obscure flag coaxed it into compiling last time

&

docker

4

JE

| . N
T

Tell me more
apout those
containers.

High level approach:
it's a lightweight VM

 Own process space
e Own network interface
e Can run stuff as root

« Can have its own /sbin/init
(different from the host)

« Machine Container »

docker

Low level approach:
It's chroot on steroids

» Can also not have its own /sbin/init

» Container = isolated process(es)

» Share kernel with host

* No device emulation (neither HVM nor PV)

« Application Container »

docker

How does it work”?
Isolation with namespaces

mnt
net
uts
IpC
user

pid namespace

jpetazzo@tarrasque:~$ ps aux | wc -1
212

jpetazzo@tarrasque:~$ sudo docker run -t -i ubuntu bash
root@ea3l19b8ac416:/# ps aux

USER PID %CPU SMEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 18044 1956 ~? S 02:54 0:00 bash
root 16 0.0 0.0 15276 1136 ? R+ 02:55 0:00 ps aux

(That's 2 processes)

-
docker

mnt namespace

jpetazzo@tarrasque:~$ wc -1 /proc/mounts
32 /proc/mounts

root@ea319b8ac416:/# wc -1 /proc/mounts
10 /proc/mounts

&

docker

net namespace

root@ea319b8ac416:/# ip addr
1: lo: <LOOPBACK, UP, LOWER UP> ntu 65536 gqdisc noqueue state UNKNOWN

22

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid Lft forever preferred Lft forever
inet6 ::1/128 scope host

valid Lft forever preferred Lft forever

ethO: <BROADCAST, MULTICAST, UP, LOWER_UP> mtu 1500 qdisc pfifo fast state UP qlen 1000
link/ether 2a:dl:4b:7e:bf:b5 brd ff:ff:ff:ff:ff:ff
inet 10.1.1.3/24 brd 10.1.1.255 scope global eth®
valid Lft forever preferred Lft forever
inet6 fe80::28dl:4bff:fe7e:bfb5/64 scope link
valid Lft forever preferred Lft forever

&

docker

uts namespace

jpetazzo@tarrasque:~$ hostname
tarrasque

root@ea319b8ac416:/# hostname
ea319b8ac416

-
docker

1pC namespace

jpetazzo@tarrasque:~$ ipcs
------ Shared Memory Segments

key shmid owner
Ox00000000 3178496 jpetazzo
Ox00000000 557057 jpetazzo

Ox00000000 3211266 jpetazzo

root@ea319b8ac416: /# ipcs
------ Shared Memory Segments

key shmid owner
------ Semaphore Arrays ------
key semid owner
------ Message Queues --------
key msqid owner

bytes nattch
393216
2778672

393216

bytes nattch
nsems

used-bytes messages

status
dest

dest

status

&

docker

user namespace

* No demo, integration in progress

 UID 0—1999 in container C1 is mapped to
UID 10000—11999 in host;
UID 0—1999 in container C2 is mapped to
UID 12000—13999 In host; etc.

* Will add one extra layer of security

&
N

docker

How does it work?
Isolation with cgroups

* memory
* CpU

* blkio

* devices

memory cgroup

» Keeps track pages used by each group:

- file (read/write/mmap from block devices; swap)
- anonymous (stack, heap, anonymous mmap)

— active (recently accessed)

- inactive (candidate for eviction)

 Each page is « charged » to a group
 Pages can be shared (e.g. if you use any COW FS)
* Individual (per-cgroup) limits and out-of-memory Killer

&

docker

memory cgroup

» Keeps track pages used by each group:

- file (read/write/mmap from block devices; swap)
- anonymous (stack, heap, anonymous mmap)

— active (recently accessed)

- inactive (candidate for eviction)

 Each page is « charged » to a group
 Pages can be shared (e.g. if you use any COW FS)
* |ndividual (per-cgroup) limits and out-of-memory Killer

&

docker

root@dockerhost: “# ||

Cpu and cpuset cgroups

» Keep track of user/system CPU time

» Set relative weight per group

* Pin groups to specific CPU(s)
- Can be used to « reserve » CPUs for some apps
- This is also relevant for big NUMA systems

&

docker

blk1io cgroups

» Keep track |Os for each block device
— read vs write; sync vs async
» Set relative weights

» Set throttle (limits) for each block device
- read vs write; bytes/sec vs operations/sec

Note: earlier versions (<3.8) didn't account async correctly.
3.8 is better, but use 3.10 and above for best results.

&

docker

special case: devices cgroups

e Controls read/write/mknod permissions
* Typically:

— allow: /dev/{tty,zero,random,null}...

- deny: everything else

- maybe: /dev/net/tun, /dev/fuse, /dev/kvm, /dev/dri...
* Fine-grained control for GPU, virtualization, etc.

» ~a bit like PCI pass-through

docker

How does it work?
Copy-on-write storage

» Create a new machine instantly
(Instead of copying its whole filesystem)

» Storage keeps track of what has changed

* Multiple storage plugins available
(AUFS, device mapper, BTRFS, overlayfs, VFS)

&
N

docker

Provisioning

Changing
small files

Changing
large files

Diffing
Memory usage

Drawbacks

Bottom line

Storage options

Union Filesystems
(AUFS, overlayfs)

Superfast
Supercheap

Superfast
Supercheap

Superfast
Efficient

Ideal for PAAS, CI/CD,
high density things

Copy-on-write
block devices

Cheap

Fast
Costly

Fast
Cheap

Slow

Inefficient
(at high densities)

Works everywhere,

W

Snapshotting
filesystems

Fast
Cheap

Fast
Cheap

Fast
Cheap

Superfast

Will be great once

but slow and inefficient memory usage is fixed

pDocker's
Ecosystem

dc ker

Docker: the cast

* Docker Engine

* Docker Hub

* Docker, the community

* Docker Inc, the company

&

docker

Docker Engine

* Open Source engine to commoditize LXC

» Uses copy-on-write for quick provisioning

* Written in Go, runs as a daemon, comes with a CLI

» Everything exposed through a REST API

» Allows to build images in standard, reproducible way
* Allows to share images through registries

 Defines standard format for containers
(stack of layers; 1 layer = tarball+metadata)

&

docker

... Open Source?

* Nothing up the sleeve, everything on the table

- Public GitHub repository: https://github.com/docker/docker

- Bug reports: GitHub issue tracker

- Mailing lists: docker-user, docker-dev (Google groups)

- IRC channels: #docker, #docker-dev (Freenode)

- New features: GitHub pull requests (see CONTRIBUTING. md)
- Docker Governance Advisory Board (elected by contributors)

&

docker

Docker Hub

Collection of services to make Docker more useful.
e Library of official base images

* Public registry
(push/pull your images for free)

* Private registry
(push/pull secret images for $)

e Automated builds
(link github/bitbucket repo; trigger build on commit)

e More to come!

-
docker

Docker, the community

>/00 contributors

~20 core maintainers

>40,000 Dockerized projects on GitHub
>60,000 repositories on Docker Hub

>25000 meetup members,
>140 cities, >50 countries

>2.000,000 downloads of boot2docker

docker

Docker Inc, the company

e Headcount: ~70
e Revenue:

- t-shirts and stickers featuring the cool blue whale
- SAAS delivered through Docker Hub
- Support & Training

&

docker

Developing
with Docker

dc ker

One-time setup

* On your dev env (Linux, OS X, Windows)

- boot2docker (25 MB VM image)
— Natively (if you run Linux)

* On your servers (Linux)

- Packages (Ubuntu, Debian, Fedora, Gentoo, Arch...)

— Single binary install (Golang FTW!)

- Easy provisioning on Azure, Rackspace, Digital Ocean...
- Special distros: CoreOS, Project Atomic, Ubuntu Core

&

docker

Authoring images
with a Dockerfile

 Minimal learning curve

* Rebuilds are easy

» Caching system makes rebuilds faster

» Single file to define the whole environment

&

docker

Authoring images
with a Dockerfile

 Minimal learning curve

* Rebuilds are easy

» Caching system makes rebuilds faster

o Single-fileto-define-the-whole-envirenment
1IVIV Ul HUl 1 () ¢

» Single file to define the whole component

&
N

docker

CONTAINERS

They're stable, they said. Stack them, they said.

Running
multiple
containers

dddd

Fig

* Run your stack with one command: f1g up
» Describe your stack with one file: f1g.yml
 Example: Python+Redis webapp

-
docker

web:
build: .
command: python app.py
ports:
- "5000:5000"
volumes:
- .:/code
links:
- redis:redis
redis:

image: redis
&

docker

root@dockerhost: “# ||

Per-project setup

» Write Dockerfiles
» Write fig.yml file(s)

 Test the result
(i.e.: Make sure that « git clone ; fig up »
works on new Docker machine works fine

&

docker

Per-developer setup

 Make sure that they have Docker
(boot2docker or other method)

* git clone ; fig up
* Done

-
docker

Development workflow

 Edit code

* |terate locally or in a container
(use volumes to share code between local
machine and container)

* When ready to test « the real thing », fig up

&

docker

Going to production

* There are many options

* | actually wrote a full 45-minutes talk about
« Docker to production »

-
docker

Implementing CI/CD

e Fach time | commit some code, | want to:

- build a container with that code
— test that container
— If the test is successful, promote that container

-
docker

Docker Hub to the rescue

» Automated builds let you link github/bitbucket
repositories to Docker Hub repositories

* Each time you push to github/bitbucket:

- Docker Hub fetches your changes,
- builds new containers images,
- pushes those images to the registry.

&
N

docker

Coming next on Docker Hub...

» Security notifications
 Automated deployment to Docker hosts

* Docker Hub Enterprise
(all those features, on your infrastructure)

&

docker

Summary

With Docker, | can:

* put my software in containers

* run those containers anywhere

» write recipes to automatically build containers
» use Fig to effortlessly start stacks of containers

» automate testing, building, hosting of images,
using the Docker Hub

&
N

docker

Would You Like To Know More?

e Get in touch on Freenode IRC channels
#docker #docker-dev

* Ask me tricky questions
jerome@docker.com

» Get your own Docker Hub on prem
sales@docker.com

* Follow us on Twitter
@docker, @jpetazzo

&

docker

