
This material is based on work supported by the
National Science Foundation under Grant No. 0802551

Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the author (s) and do not necessarily reflect the views of the National Science Foundation C2L8S1

U the

In this lesson, you will explore package management
systems found in Linux. You will have the opportunity
to download, create, install, and remove software
packages for various Linux distros. You will also
practice these tasks in the command line
environment.

Understanding the package management system will
allow you to quickly respond to customers’ software
needs, apply security updates, and troubleshoot
problems with automated tools. It is a core
competency for Linux administrators.

C2L8S2

Student Expectations

You should know what will be expected of you when
you complete this lesson. These expectations are
presented as objectives.

Objectives are short statements of expectations that
tell you what you must be able to do, perform, learn,
or adjust after reviewing the lesson.

C2L8S3

Objective

Given an update to an existing source
package, the student will be able to download
the appropriate source RPM or DEB package,
update the file, recompile, and install the
resulting RPM or DEB package correctly, using
command-line tools.

C2L8S4

During this lesson, you will
explore:

• Package management
• The sandbox environment
• Software development tools
• RPM Package management
• DEB Package management
• Installation of the source package
• Updating and compiling a RPM package
• Updating and compiling a DEB package
• Installing the updated package
• Troubleshooting common installation problems

including unmet dependencies

C2L8S5

C2L8S6

Before you can build any software you need to create the build
environment and install the build tools for your distribution. In this
task, you will learn about the Debian build environment.

The steps to creating the build environment are demonstrated in the
video to your right. These steps are:
1. Log in under your regular user ID.
2. Note: Press ENTER on your keyboard after each command
3. Open a terminal (console) window.
4. Type sudo apt-get update to update the package list.
5. Type sudo apt-get upgrade to upgrade the system to the latest

versions of all installed software.
6. Type sudo apt-get install build-essential to install the build

software.
7. Install the suggested software with the exception of the debian-

maintainers package.
8. Create a code directory under your home directory using the

command: mkdir code.

At this point you are ready to get the source package you would like
to update.

Select PLAY below to
view the Debian build
video.

Required Reading
• Debian new maintainers guide
• Debian building packages
• Updating Ubuntu Package

 View Video
VideoLesson8DebianBuildEnvir

onment(C2L8S14).mp4

http://www.debian.org/doc/maint-guide/ch-start.en.html
http://www.debian.org/doc/maint-guide/ch-build.en.html
https://wiki.ubuntu.com/PackagingGuide/Recipes/PackageUpdate

C2L8S7

At this point you have created your build environment on your Debian
based machine. Now you will need to retrieve the source package for
the application you wish to rebuild.

In this example, you are going to rebuild a package called cvs-
syncmail.

1. Change to the code directory: cd code
2. Note: Press ENTER on your keyboard after each command.
3. Retrieve the source file by typing apt-get source cvs-syncmail
4. The cvs-syncmail package will install under your code directory.
5. Change to the cvs-syncmail directory using cd cvs-syncmail*
6. Note: You must change the * to the version number of the

source file you downloaded, as in cd cvs-syncmail2.14-8
7. Make any changes / updates/ adjustments needed.

The next step will be to build the Debian package for distribution to
other machines.

Select PLAY below to view
the Debian package install
video.

Required Reading
• Debian package

 View Video
VideoLesson8InstallDebianSour

ce(C2L8S15).mp4

http://sakafi.wordpress.com/2008/01/03/installing-packages-in-debianubuntu-servers/

C2L8S8

Since you have your source package installed from the last step
and have made your changes, it is time to build the new
installable packages.

1. Note: Press ENTER on your keyboard after each command
2. Go to your source directory.
3. Use the command: dpkg-buildpackage
4. Check any error messages for unmet dependencies and

correct them using: sudo apt-get install
5. Once all dependencies are corrected and installed the

dpkg-buildpackage command will run without errors.
6. In your home/code directory will be your new deb packages

that can be installed using the sudo dpkg -i command.

Note: You may have to force the package to install if the new package does not

have a version number upgrade that is higher than the existing package. For
instance, you cannot install a version 1.o1 package to an existing 1.01 package.
However, a version 1.02 will have no problems updating a 1.01 package.

Select PLAY below to view
the Debian build package
video.

 View Video
VideoLesson8BuildingDebianPa

ckage(C2L8S16).mp4

C2L8S9

Since Linux is comprised of many open source projects with thousands of developers around the world
working on applications, bug fixes and improved functionalities are sometimes delayed before they are
available through official channels. Consequently, a Linux administrator will be required to update an existing
package to bring it up-to-date with the upstream version (or the developer’s latest release). The process is
similar to recompiling and require the administrator to:

1. Update the build system, then access the command line.
2. Note: Press ENTER on your keyboard after each command.
3. Go to the code directory using cd ~/code
4. Get the source package using apt-get source <packagename>
5. (Note: replace <packagename> with a real package name above.)
6. Locate the new version of the applications source code in .tar.gz format.
7. Un-archive the downloaded source package in the ~/code directory. Be

careful not to over-write existing code.
8. Copy the source tar.gz file from the download directory and rename it to

the standard Debian format. This name change will match the source
(original) file that was placed into the directory with the source package
from apt-get, but the version numbers will be different.

9. Change to the new source directory.
10. Enter the command ./configure
11. Type make
12. Correct any errors.

http://www.debian.org/doc/FAQ/ch-pkgtools.en.html

C2L8S10

After checking and correcting any errors:

1. Go to the code directory using cd ~/code
2. Note: Press ENTER on your keyboard after each command .
3. Remove the directory in which you built the code.
4. Un-archive the source tar.gz file and go to the directory.
5. Copy the Debian directory from the original code installed by the

apt-get source command in step 4 in the previous screen.
6. Delete the old patch directory.
7. Use command rm –rf debian/patches
8. Update the changelog with dch –I and correct the version number

on the top line and then your email address. Put a comment after
the asterisk * in the top entry. Save the file.

9. Compile the package using dpkg-buildpackage.
10. Fix any dependencies that cause the script to report an error and try

step 8 again.
11. At the end, you will get a message about signing the packages,

ignore it for now.
12. Your new deb packages will be in your ~/code directory.

The process is a little different on RPM based machines.

Required Reading
• Packaging for Ubuntu
• Packaging for Debian

https://wiki.ubuntu.com/PackagingGuide/Recipes/PackageUpdate
http://wiki.debian.org/PackageManagement
http://wiki.debian.org/PackageManagement

C2L8S11

To summarize the build process:

1. Update the build system.
2. Setup the build directories.
3. Install the build software.
4. Get the source packages.
5. Install the source packages.
6. Make necessary changes.
7. Build the packages, making sure to install required

dependencies.
8. Test the install using dpkg to make sure it installs

cleanly on a test machine.
9. Distribute.

The process is a little different on RPM based machines.

http://www.debian.org/doc/FAQ/ch-pkg_basics.en.html

C2L8S12

C2L8S13

As with Debian, before you can build any software on a Redhat system, you need to create the
build environment and install the build tools for your distribution. In this task, you will learn about
the RPM build environment. The steps to creating this environment are demonstrated in the video
to your right. These steps are:

1. Log in to your Redhat system using your regular user id.
2. Note: Press ENTER on your keyboard after each command.
3. Type sudo yum upgrade to update your build system to the latest

version of software.
4. Type sudo yum install rpmdevtools to install the build software.
5. Type sudo yum groupinstall “Development Tools” to install all of the

development tools.
6. Type sudo yum install rpm-build to install the build scripts.
7. Create the build directory structure.
8. Type cd to make sure you are in your home directory.
9. Type mkdir -p ~/src/redhat to create your Redhat build directory.
10. Type cd ~/src/redhat to go to that directory.
11. Type mkdir BUILD RPMS SOURCES SPECS SRPMS tmp to create the

required directories. (Note: the names such as BUILD and RPMS are
case sensitive and the build system expects to find these exact
names.)

Select PLAY below to view
the Debian package install
video.

 View Video
VideoLesson8RedhatBuildEnvir

onment(C2L8S21).mp4

C2L8S14

To continue the Redhat build:

1. Type cd to return to your home directory.
2. Note: Press ENTER on your keyboard after each command.
3. Using the curl command, you need to retrieve the default

.rpmmacros file using the command:

Required Reading

• Building RPM Packages Pt 1
• Building RPM Packages Pt2
• Building RPM packages Pt3

At this point you are ready to get the source package you would like to update.

4. Using any text editor (like vi or pico) to edit the
.rpmmacros file you just retrieved.

5. Change the FIXME in the home directory and the
FIXME in the email address line to reflect the correct
information. Your home directory is normally your user
id and your email address needs to be fixed as well.
Don't change anything else in that file.

6. Save and exit back to your home directory.

curl http://lms.lincs.pscit.org/content/PSC2/lesson8/rpmmacros.txt > .rpmmacros

http://www.ibm.com/developerworks/library/l-rpm1/
http://www.ibm.com/developerworks/library/l-rpm2/
http://www.ibm.com/developerworks/library/l-rpm3/

C2L8S15

At this point you have created your build environment on your RPM based machine. Now you will need to
retrieve the source package for the application you wish to rebuild. In this example we are going to rebuild a
package called “mc” which is a command line file utility.

1. Go to to the home directory using cd.
2. Retrieve the source file by typing yumdownloader --source mc
3. The mc source rpm will now be in your home directory.
4. Verify that the mc package is installed on the build system using sudo yum

install mc.
5. Allow any dependencies to install.
6. Install the source rpm by typing rpm -i mc*.*.rpm where * and * are the version

and architecture for the rpm you downloaded.
7. Go to the ~/src/redhat directory using cd ~/src/redhat.
8. The source code and any required patches or files are in the SOURCES directory

and the build directions are in the SPECS file under the name mc.spec.
9. Make any changes to these files that you need to make.
10. Update the release information in the spec file and save. Use any text editor to

do this. Always put company or personal initials after the release information so
you don’t confuse your packages with the official release versions.

11. If you are fixing bugs, please consider submitting your fixes to the development
team so they may incorporate your fixes in the upstream package.

You are now ready to re-build the rpm packages.

Select PLAY below to view
the Debian package install
video.

Required Reading
• Create RPM packages

 View Video
VideoLesson8InstallRPMSource

(C2L8S23).mp4

http://fedoraproject.org/wiki/PackageMaintainers/CreatingPackageHowTo

C2L8S16

The next step will be to build the RPM packages for distribution to other
machines now that the source package is installed.

1. Note: Press ENTER on your keyboard after each command.
2. Change into your ~/src/redhat directory and use the command:

rpmbuild -ba –-target=i686 SPECS/mc.spec
3. Substitute the i686 for any other system architecture for which you are

building.
4. Substitute the mc.spec for any other package spec file name you are

using.
5. Check any error messages for unmet dependencies and correct them

using sudo yum install
6. Once all dependencies are corrected and installed, the rpmbuild

command will run without errors.
7. In your src/redhat/RPMS directory will be your new rpm packages that

can be installed using the command: sudo yum –nogpgcheck localinstall
8. Note: You may have to force the package to install if the new package does not have a

version number upgrade that is higher than the existing package. For instance, you cannot
install a version 1.o1 package to an existing 1.01 package. However, a version 1.02 will have no
problems updating a 1.01 package.

9. Your modified source RPMs will be found in the ~/src/redhat/SRPMS
directory and should be saved in case you need to make future changes.

Select PLAY below to
view the Debian package
install video.

 View Video
VideoLesson8BuildingRPMPack

age(C2L8S24).mp4

C2L8S17

One of the most frequent tasks of a Linux administrator is to update packages to more recent versions. These
updates occur frequently as upstream developers fix bugs, make modifications, and add features to packages.
Consequently, administrators must become familiar with the process of updating package versions.

1. From a terminal window, update your system to make sure all software is current.
2. Note: Press ENTER on your keyboard after each command.
3. Install the source package from Yum using yumdownloader –source packagename
4. Download the new source into ~/src/redhat/SOURCES/ using any software you wish.
5. Edit the SPEC file in ~/src/redhat/SPECS/ for that package name.
6. Change the version number and release number.
7. Fix the packager name and email address.
8. Comment out all patches by adding a # sign in front of the line since you may not need them for the new

version.
9. Update the change log entry near the bottom of the spec file.
10. Save and exit the editor.
11. Use rpmbuild –ba packagename to build the packages.
12. Correct any dependency issues using sudo yum install packagename to install missing packages.
13. Redo steps 11 and 12 to correct errors.
14. After a successful build, RPM files will be stored in the RPMS directory and source RPMS in the SRPMS

directory.

Note: test your builds on non-critical machines before releasing for distribution!

http://www.redhat.com/advice/tips/rpm_revisited.html

C2L8S18

To summarize the RPM build process:

1. Update the build system
2. Setup the build directories
3. Install the build software
4. Get the source packages
5. Install the source packages
6. Make any changes
7. Build the packages, making sure to install any

dependencies
8. Test install using sudo yum –nogpgcheck

localinstall to ensure it installs cleanly on a test
machine

9. Distribute

Building packages is the primary method of installing software on
Linux machines. Without packages, it would be difficult to maintain
version control over large numbers of machines. This confusion
would introduce software instability and unreliability to an
environment that must remain stable.

Six popular versions of Linux include Redhat, Suse, Ubuntu, Fedora,
Centos, and Debian. Some of these OS versions share packages, but
others are incompatible. The Deb package is used on Debian and
Ubuntu systems, but the RPM package is used on Redhat, Suse,
Fedora, and Centos. Both RPM and Deb packages serve the same
purpose but are built in different methods.

All software installed on a Linux machine should be built into the
packages. One sure sign of a poor or inexperienced Linux
administrator is the choice to update software or settings without
using the package management system.

C2L8S19

