
This material is based on work supported by the
National Science Foundation under Grant No. 0802551

Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the author (s) and do not necessarily reflect the views of the National Science Foundation C2L9S1

U the

Linux operating systems have a core component called the kernel
which functions as the heart of the system and determines how the
computer interacts with hardware and software. As a Linux
administrator, you may be asked to update, fix, or re-build the Linux
kernel. These changes to the kernel are often necessary to improve
efficiency, add functionality, or remove features to enhance security
and stability.

In this lesson, you will explore the Linux kernel and the various
methods to compile, package , and install it. By the end of this
lesson, you should know how to setup a build system, install and
configure the kernel , and build RPM and Debian-based kernel
packages.

This topic is important because every Linux administrator must have
a thorough understanding of the Linux kernel in order to make
necessary changes or improvements to the core system. At the end
of this lesson, you will have a better grasp of kernel configuration
and the best practices for kernel management.

C2L9S2

Student Expectations

You should know what will be expected of you when
you complete this lesson. These expectations are
presented as objectives.

Objectives are short statements of expectations that
tell you what you must be able to do, perform, learn,
or adjust after reviewing the lesson.

C2L9S3

Objective

Given the need to add new functionality to the
Linux kernel, or revise the configuration of the
Linux kernel, the student will be able to
compile and boot a Linux kernel successfully
as per industry standards.

C2L9S4

During this lesson, you will
explore:

• The purpose of the Linux kernel
• The Linux kernel build system
• Kernel management
• Diff and Patch files
• Configuration of the Linux kernel
• Building and installing a kernel RPM Package
• Building and installing a kernel DEB Package
• Building the kernel manually for test purposes

C2L9S5

The Linux kernel is a piece of software that forms the core or center of
the Linux operating system. It controls the communication between the
hardware devices on a computer system and software applications. It
also handles memory and CPU priorities. The kernel sits between the
“user space” (the area where software applications are run) and the
hardware components and ensures they work together.

If computer users wish to open a file stored on the hard drive, or
communicate with a hardware device, they will use a software
application to make the request. When the command to open the file is
issued, the command is routed through the kernel. In this way, the
software is able to access the attached hardware (disk drives, USB
sticks, keyboards, and anything else connected to the computer.

The kernel serves as a mediator between your software and hardware.
It makes sure that everyone plays fair, gets the memory and the
processor time required, and performs necessary tasks at the right
time. It is a portable interface between platforms.

 The kernel contains code that “talks” to the hardware devices (i.e.
memory, video cards, sound cards, and disk drives). The kernel handles
and tracks all memory related functions.

Required Reading
• Anatomy of Kernel
• Linux boot process
• Linux Kernel

C2L9S6

Software Apps / User space

Kernel

CPU Memory Devices

Hardware

http://www.ibm.com/developerworks/linux/library/l-linux-kernel/
http://www.ibm.com/developerworks/linux/library/l-linuxboot/index.html
http://en.wikipedia.org/wiki/Linux_kernel

The kernel is modular, which means that it can be compiled to include
or not include hardware modules which the user needs or does not
need. This also means that the kernel can be extremely efficient or
extremely bloated. The size of the kernel depends on the skill of the
Linux Administrator.

The Linux kernel is open source, which means that all the code is
available to the end user. If you have a problem with a driver, have
some coding knowledge, and want to fix it, you can. Just send the
patches to Linus Torvalds and they may be included in the next kernel
release!

The Linux kernel has seven sections. Each will be explored in turn.
• System call interface (SCI)
• Process management (PM)
• Virtual file system (VFS)
• Memory management (MM)
• Network stack
• Architecture dependent code
• Device Drivers (DD)

Suggested Reviewing
• The Linux Kernel
• Kernel Diagram

C2L9S7

Software Apps / User space

Kernel

Hardware

http://tldp.org/LDP/tlk/tlk.html
http://www.makelinux.net/kernel/diagram

Required Reading
• The Linux Kernel
• Using the /Proc filesystem
• Inside the Linux scheduler

C2L9S8

One of the seven components of the Linux kernel is the
System Call Interface (SCI). The SCI is a thin kernel layer
that provides the interface between the user space and the
kernel. In Linux, this layer is architecture dependent,
meaning that the type of the processor used in the system
matters. Please review IBM’s explanation of the SCI.

Process management is another component of the kernel. A
process is an individual task that the processor is going to
perform. This task is sometimes referred to as a thread. The
process management layer of the Linux kernel is responsible
for the execution of these processes.

The processes may or may not need CPU time. If CPU time is
needed, the process management layer of the Linux kernel
allows two or more different tasks to use the CPU. The
process management layer of the kernel also is responsible for
stopping a process, forking a process (creating a new process
from an old one), and communicating between different
processes or threads. Use the top command to view threads
or processes running on a machine.

http://tldp.org/LDP/tlk/tlk.html
http://www.ibm.com/developerworks/linux/library/l-proc.html
http://www.ibm.com/developerworks/linux/library/l-scheduler/
http://www.ibm.com/developerworks/linux/library/l-linux-kernel/
http://www.ibm.com/developerworks/linux/library/l-linux-kernel/

Required Reading
• Dynamic memory management

C2L9S9

A third component of the Linux kernel is memory management.

The kernel also manages the memory use of the computer. The
memory installed on the system, including virtual or disk-based
memory, is managed in pages. These pages are 4KB allocated
buffers of memory (or 4KB chunks of memory). The memory
management layer of the kernel keeps track of which pages are
full, partially full, or empty.

When multiple processes (or programs) need to use the same
segments of memory, these pages can be moved out of the
hardware memory and saved to the hard disk. This movement is
called swapping—the pages of memory are swapped onto the
hard drive. When the other processes need the memory again, the
reverse process occurs and the saved pages are moved from the
hard drive back into the physical memory. Consequently, having
more physical memory on a computer system may decrease the
frequency of page swaps.

MEMORY

Kernel

Software

Hard
Drive

Swap

http://www.ibm.com/developerworks/linux/library/l-linux-slab-allocator/

Required Reading
• Virtual File System
• Virtual file systems
• Better networking with SCTP
• Linux networking stack
• The journey of a packet

C2L9S10

Virtual File system

In addition to system calls, process and memory management, the
Linux kernel also creates a virtual file system that serves as the
common interface for all file systems accessed by client
applications. This virtual file system provides a common interface
between the kernel’s SCI and the supported file system.

This VFS interface allows the kernel to rapidly communicate with
multiple file system types which are considered “plug-ins” to the
kernel functionality.

Network Stack

The network stack provides the interface between the Internet
Protocol (IP) and the system call interface (SCI)of the kernel.

http://www.ibm.com/developerworks/linux/library/l-sc12.html
http://en.wikipedia.org/wiki/Virtual_file_system
http://www.ibm.com/developerworks/linux/library/l-sctp/
http://www.ibm.com/developerworks/linux/library/l-linux-networking-stack/
http://ftp.gnumonks.org/pub/doc/packet-journey-2.4.html
http://en.wikipedia.org/wiki/Virtual_file_system

Required Reading
• Drivers demystified
• Device drivers
• Writing device drivers
• General device drivers

C2L9S11

Device Drivers

The device driver layer is the portion of the kernel containing the largest
amount of source code. This is the layer that makes a particular hardware
device useable to the computer system. For example, if you wish to plug-
in a specific brand of USB keyboard, the device driver for that keyboard
brand must be available in the kernel.

In the Linux kernel source code, the device drivers are divided into sub-
directories based on the type of the driver.

Architecture-dependent code

One of the biggest selling points of Linux is that it will run on almost any
type (or architecture) hardware. For example, Linux will run on the Intel
based x86 family or processors, the AMD64 processors, the PPC
processors found on older Apple computers, and many more.

The architecture dependent code in the Linux kernel is a small section of
code that provides the interface that makes this work. A kernel compiled
for an Intel 386 machine will not work on a PPC machine because of the
different architecture dependent code that is included.

http://www.linuxplanet.com/linuxplanet/tutorials/1019/1/
http://www.linux-books.us/linux_general_0012.php
http://kernel-janitor.sourceforge.net/kernel-janitor/docs/driver-howto.html
http://en.wikipedia.org/wiki/Device_driver
http://en.wikipedia.org/wiki/Virtual_file_system

Required Reading
• Configuring the kernel
• Kernel configuration file

C2L9S12

One of the first steps of kernel management is kernel
configuration. Kernel configuration is the manual process of
deciding what the kernel’s functionality will be when it is compiled.

This process includes deciding the architecture on which it will run,
how memory and processes are managed, what networking
protocols will be available, what file system types may be used,
and what device drivers will be available. Each of the seven layers
of the Linux kernel is affected during kernel configuration.

As the Linux administrator, you may be called upon to configure
the kernel to include new code, enhance security, enhance system
speed, or correct mistakes. It is important to recognize what layer
of the kernel you are being asked to change when such a request is
made. You must also keep track of the version numbers of the
kernel used in your environment.

Select image for a simplified view of
the Linux kernel.

http://www.linuxheadquarters.com/howto/tuning/kernelconfig.shtml
http://tldp.org/HOWTO/SCSI-2.4-HOWTO/kconfig.html
http://commons.wikimedia.org/wiki/File:Linux_kernel_diagram.png

Linux-kernel mailing list FAQ
http://www.tux.org/lkml/

C2L9S13

The kernel version numbers have a purpose. They identify the
components of the kernel and help to identify the most recent
version. Version numbers are also important for bug tracking and
development.

The production (stable) versions of the kernel have even numbers:
• 2.2
• 2.4
• 2.6

The development (unstable) versions of the kernel have odd
numbers:
• 2.3
• 2.5
• 2.7

The third number in the kernel is the release number. When
compiling a kernel always try to use the highest version and
release of source code available as it contains the most recent
fixes and enhancements. It is a good practice to subscribe to the
Linux kernel mailing list to keep abreast of the latest changes.

http://www.tux.org/lkml/
http://www.kernel.org/

C2L9S14

Unless you are working on a “non-production” machine, it is
recommended that you stay away from development kernels or
kernels that are unstable or untested.

Kernel drivers interface directly with hardware. A mistake in a
frequency setting or other setting can do physical damage to
hardware components (i.e. melt memory cards or display
adapters). Be very careful when changing the source code within
the kernel!

Linux administrators should limit version numbers (or versions) of
kernels in their environment at one time. The best administrators
make sure all of their production machines have one version of
kernel, and all of their development machines have a second, and
finally all of their servers have a third. In this way, they only keep
track of three kernel versions at one time. This minimal approach
makes troubleshooting and updating easier.

http://www.kernel.org/

C2L9S15

This is one method to use for kernel configuration. You will develop
your own method as you become familiar with Linux processes.

1. The kernel should only contain necessary components. Nothing more. If

you know what hardware is being used, what functionality is required,
and what devices are going to be added, then you should configure the
kernel with only those components. The kernel is a layer of system
security, and the first rule of security is to give a user only enough
functional to do his job—nothing more!

2. The kernel should be built and tested on a clean, up-to-date machine. Do
not configure and compile a kernel on a machine that has been used for
other purposes. You do not want to risk having unnecessary or unsafe
code being compiled into a kernel as this will put the entire system at risk.

3. The kernel should always be installed from the official source tree at
http://www.kernel.org or it should be installed based on a current version
of the package (DEB or RPM) for your distribution. Always maintain
version and release numbers for your new kernel.

4. Never delete the current kernel version when installing a new one before
you know that the newly compiled version boots and provides the
required functionality. It is very easy to end up with a non-working
system. Always install the new kernel on a test machine prior to
distributing it to production machines. Once you know everything works,
then you may delete prior versions.

http://www.kernel.org/

C2L9S16

Before the kernel becomes useable on a Linux system it must be
compiled. This process takes human readable text (source code) and
turns it into machine readable binary code (1’s and 0’s). Fortunately for us,
the process is almost fully automated when we use a Linux system.

The process consists of a few steps prior to installation on the production
machine:

1. Getting the source code
2. Installing the source
3. Configuring the kernel
4. Making the dependencies
5. Making the kernel image
6. Making the modules
7. Installing
8. Testing
9. Distributing

Depending on the build process, steps 4-6 may be reduced to a single
step. The build (compiling) process may result in a kernel image file with
modules, an RPM package, or a Debian package. For the remainder of this
course, you are going to create each of these products.

C2L9S17

The Linux kernel can be built to an RPM or a Debian package, or it can
be built and installed using the kernel image and modules. One of the
tasks of the Linux Administrator is to decide which to use. The Linux
kernel should never be distributed to end users as a tar.bz2 file or as
source files. When the distribution system is properly used, every file is
accounted for and can be replaced or re-installed if files become
corrupted.

Kernel Image and Modules:
Used on a development machine to test changes, and functionality. Can
be used to identify the correct choices during the configuration
process.

RPM Package:
Used to test, and release the newly compiled kernel to a Redhat based
machine such as Redhat, Fedora, CentOS, and Mandriva.

DEB Package:
Used to test, and release the newly compiled kernel to a Debian based
machine such as Debian, Ubuntu, Kubuntu, and Linspire.

It is good practice not to release software using the default kernel
image files and dependencies.

Recommended Reading
Linux Kernel
RPM Package

http://www.faqs.org/docs/Linux-HOWTO/Kernel-HOWTO.html
http://fedoraproject.org/wiki/How_to_create_an_RPM_package

C2L9S18

Before starting software development, you must first update your build
system to the latest version of software. Then, create the build
environment and install all necessary dependencies.
 Note: Press Enter on your keyboard after each command (in bold).

1. Log into your Debian-based system under your normal user account.
2. Go to Applications Accessories Terminal from the menu.
3. At a command prompt type sudo apt-get update
4. Enter your password when requested and the system will update all

package databases.
5. Once back at the command prompt type sudo apt-get upgrade
6. If requested for your password, enter it.
7. If prompted to accept the changes press Y (for yes)
8. Allow the system to update. This may take some time depending on the

amount of software that needs to be installed.
9. Install the build scripts using the following command:
 sudo apt-get install build-essential fakeroot kernel-package linux-source

libncurses5-dev bzip2 wget
10. Install the suggested packages. Note: you may skip the documentation

packages ending in .doc by cutting and pasting or typing them into an apt-
get install line.

11. Add and delete packages as requested to resolve any errors during the
installation process.

12. Do a final sudo apt-get upgrade when complete.

Important:
Continue to next slide for
remaining steps (13-23).

Select PLAY below to view a
video on updating an
existing Debian-based
installation.

 View Video
VideoLesson9UpdateDebianIns

tall(C2L9S13).mp4

C2L9S19

 Note: Press Enter on your keyboard after each command (in bold).

13. Add user to src group by typing sudo adduser cmolnar src
14. Reboot to pick up the new groups and packages
15. Open the terminal window again.
16. Change to the /usr/src directory by typing cd /usr/src
17. Use FTP to get the latest source code from the ftp.kernel.org site. It

is in the /pub/linux/kernel directory. Type ftp –p ftp.kernel.org
18. Type cd pub/linux/kernel/v2.6
19. Type ls linux*.bz2 to find the most recent version of kernel. Look for

the most recent file.
20. Type get latestkernelfilename to start download.
21. Once file received type quit
22. Type tar xvjf latestkernelfilename to un-archive the kernel source

code.
23. Create a link to the kernel source code by typing
 ln –s ./linux-2.6.xx linux (Replace xx with kernel number).

Recommended Reading
Tar manpage
Ftp manpage At this point the system is configured, and the Linux kernel source code

has been installed.

ftp://ftp.kernel.org/
ftp://ftp.kernel.org/
http://unixhelp.ed.ac.uk/CGI/man-cgi?tar
http://unixhelp.ed.ac.uk/CGI/man-cgi?ftp

C2L9S20

After updating the build system and installing the kernel source, your next
step is configuring the kernel.

The program to configure the kernel is built directly into the kernel source
package. There are two ways to do this configuration: (1) use a graphical,
mouse-driven interface, or (2) use a terminal based menu driven interface.
In either circumstances, begin with a kernel configuration that works—
preferably, the same kernel running on the build machine.

1. From the terminal window, access the Linux source directory by typing cd

/usr/src/linux/
2. Type ls /boot/config* to list the installed configuration versions. The

uname –r command will help you identify the correct version.
3. Copy the configuration file to your Linux source directory by typing, cp

/boot/config-`uname –r` ./.config
4. Verify the configuration file has been copied to your source directory by

typing ls –la .config (You see a single file with today’s date).
5. Type make menuconfig to begin configuration process. If it errors out,

look at the message. You may need to change your terminal screen to a
larger setting.

6. Use the menu options to make necessary configuration changes.
7. Use the tab key to jump to the Exit button. Exit.
8. Select Yes when asked to save the file. (Command prompt displays)

Required Reading:
Kernel configuration
Uname manual page

Select PLAY below to view
the Debian kernel
configuration video.

 View Video
VideoLesson9Configuri
ngKernel(C2L9S15).mp4

http://newbiedoc.sourceforge.net/tutorials/kernel-pkg/config-kernel-pkg.html.en
: http:/www.mediacollege.com/cgi-bin/man/page.cgi?topic=uname

C2L9S21

Now that you have installed and configured the kernel source, the next
step in the process is to build the kernel package.

1. From the terminal window, enter the Linux source directory by typing, cd

/usr/src/linux/
2. Type make-kpkg clean to clean the kernel build files. This command gets

rid of old files that may have been distributed in error.
3. Type fakeroot make-kpkg –initrd –append-to-version=-customkernel

kernel_image kernel_headers to initiate the kernel build process.
4. The kernel build may take 2-3 hours depending on the size of the kernel,

your configuration, processor speed, and other activities. Try not to do
anything else on the machine while the kernel is building.

5. A command prompt (without error messages) will appear when complete.
6. Type cd /usr/src
7. Type ls –l linux*.deb to view your new Debian packages in that directory.
8. Install using dpkg –install dpkgname
9. Make sure you have a boot disk or CD in case you need to troubleshoot.
10. Reboot the system with the new kernel image using sudo shutdown –r 0
11. If asked on the reboot, select your new kernel from the menu.

If you have any problems with your system when you reboot, use your
keyboard to get to a terminal window and correct the changes. To correct
errors, you may have to recompile the kernel, or uninstall your new kernel
and allow your system to reboot using the original kernel.

Required Reading:
Kernel packaging on Debian

Select PLAY below to view a
video on building a Debian-
based kernel.

 View Video
VideoLesson9BuildingK

ernel(C2L9S16).mp4

http://newbiedoc.sourceforge.net/system/kernel-pkg.html

C2L9S22

To summarize the build process:

1. Update the build system.
2. Setup the build directories.
3. Install the build software.
4. Get the source packages.
5. Un-archive the kernel package
6. Copy configuration file to build directory.
7. Run configuration utility with make.
8. Save configuration file.
9. Run make deb-pkg to compile and build packages.
10. Install using dpkg when complete onto a test machine.
11. Fix any errors.
12. Distribute.

This is one of many ways to build the kernel. For Debian-based
machines, I choose the default kernel build process. Each flavor
(distribution) has a slightly different process; this process will
work on all machines. The process is a little different on RPM
based machines. Required Reading:

Linux Kernel makefile

http://www.ravnborg.org/kbuild/makefiles.html

C2L9S23

C2L9S24

As with Debian, before you can build any software on a Redhat system, you need to create the
build environment and install the build tools for your distribution. In this task, you will learn about
the RPM build environment. The steps to creating this environment are demonstrated in the video
to your right. These steps are:

1. Log in under your regular user id.
2. Type sudo yum upgrade to update your build system to the latest version.
3. Type sudo yum install rpmdevtools to install the build software.
4. Type sudo yum groupinstall “Development Tools” to install all of the

development tools.
5. Type sudo yum install rpm-build to install the build scripts.
6. Next we need to create the build directory structure.
7. Type cd to make sure you are in your home directory.
8. Type rpmdev-setuptree to setup the Redhat build tree.
9. Type cd to return to your home directory.
10. Type yumdownloader –source kernel to download the kernel source.
11. Type ls to locate the src.rpm file that was just downloaded.
12. Type sudo yum-builddep filename.src.rpm
13. Note: The filename after yum-builddep is the file name from the step above.
14. Allow the system to install all additional packages that it wishes to install.
15. Type rpm –Uvh filename.src.rpm to install the kernel source.
16. Note: the filename is the src.rpm file from step 11.

Select PLAY below to view
the RPM build video.

Required Reading:
Building kernel on Fedora
Fedora kernel build process

Note: Press the Enter key on your keyboard after each command (in bold).

 View Video
VideoLesson9CreatingR
PMEnvironment(C2L9S

19).mp4

http://fedoraproject.org/wiki/Docs/CustomKernel
http://www.howtoforge.com/kernel_compilation_fedora

C2L9S25

The same rules apply to the configuration in the RPM version as the DEB
version. Do not include more than you need to, make sure security is taken
into account, and keep the size of the end kernel small.

1. Type cd ~/rpmbuild/SPECS to change into the build SPECS directory.
2. Type rpmbuild –bp –target=`uname –m` kernel.spec to unpack the source

code package.
3. Type cd ~/rpmbuild/BUILD/kernel-2.6.$ver/linux-2.6.$ver.$arch where the $ver

is the version number of the kernel and the $arch is the architecture of your
machine. You can find the architecture of your machine by typing uname –m
at a command prompt.

4. Start with your default configuration file by copying the one from your boot
directory. Use the command cp /boot/config-`uname –r` ./.config to do this.

5. Type make menuconfig to begin the menu configuration.
6. Make the necessary changes to the configuration.
7. Select Exit and then Save configuration when complete.
8. Use a text editor, such as vi or pico, and add the architecture of the machine

at the top of the file in the following form: # x86_64 for a 64 bit Intel 86
machine. You can find your architecture by typing uname –i at the command
prompt.

9. Type cp .config ~/rpmbuild/SOURCES/config-$arch-generic to copy the
configuration file to the sources directory so the rpm build scripts can find it.

Your new kernel is configured and ready to build.

Required Reading:
RPM build commands
RPM build manpage

Select PLAY below to view a
video on configuring a kernel
for RPM packaging.

 View Video
VideoLesson9Configure
KernelRPMPackaging(C

2L9S20) mp4

http://www.rpm.org/max-rpm-snapshot/ch-rpm-b-command.html
http://linux.die.net/man/8/rpmbuild

C2L9S26

Since you have your source package installed from the last step and have
made your changes, it is time to build the new installable packages.

1. Type cd ~/rpmbuild/SPECS to change to the build specs directory.
2. Use your editor (vi or pico) to open the kernel.spec file. For vi the command

is vi kernel.spec
3. Locate the entry for define buildid
4. In vi type: /define buildid and the cursor would be placed at the text.
5. Add a version identifier after the build id to identify your version of kernel. It

must start with a . (period) and cannot have spaces.
6. Save the file. In vi your command would be :w
7. Exit the editor. In vi your command would be :q
8. To compile the kernel, type rpmbuild -bb --with baseonly --without debug

info --target=`uname -m` kernel.spec
9. This process may take a few hours.
10. When complete, change to your package directory by typing:
 cd ~/rpmbuild/RPMS/
11. You can install your new kernel by using the yum –nogpgcheck localinstall

package.rpm command.

Install the new kernel on a test machine without before releasing to other
machines. You may need to rebuild once or twice to work out any bugs or
configuration problems. Try not to install anything on your build machine
unless you are prepared to re-install it.

Required Reading:
RPM spec file
RPM build process

Select PLAY below to view a
video on building a kernel for
RPM packaging.

 View Video
VideoLesson9BuildKern
elRPMPackaging(C2L9S

21). mp4

http://www.rpm.org/max-rpm/s1-rpm-build-creating-spec-file.html
http://www.ibm.com/developerworks/library/l-rpm1/

C2L9S27

To summarize the RPM build process:

1. Update the build system
2. Setup the build directories
3. Install the build software
4. Get the source packages
5. Install the source packages
6. Make changes to the configuration file
7. Build the new kernel
8. Test install using sudo yum –nogpgcheck localinstall to make sure

it installs cleanly on a test machine
9. Test all functionality
10. Distribute

C2L9S28

C2L9S29

The first step to building a kernel manually is to make sure that your
machine can compile either an RPM or a Debian kernel package based on
your machine type. Once you know it is able to do that you can follow
these steps:

Note: Press the Enter key after each command line entry (in bold).
1. Enter the terminal for your system and make it to full screen.
2. Use your software management system to update your machine to the latest

version of software. Example: sudo yum update or sudo apt-get upgrade
3. Create a code directory in your home directory by typing mkdir ~/code
4. Change into the code directory by typing cd ~/code
5. Use FTP to get the latest source code from the ftp.kernel.org site. It is in the

/pub/linux/kernel directory. Type ftp –p ftp.kernel.org
6. Type cd pub/linux/kernel/v2.6
7. Type ls linux*.bz2 (Identify the most recent file version of the kernel).
8. Type get latestkernelfilename to start download.
9. Once the file has been received type quit
10. Type tar xvjf latestkernelfilename to un-archive the kernel source code.
11. Create a link to the kernel source code by typing ln –s ./linux-2.6.xx linux

(Replace xx with the kernel version number).

The system is now configured and the Linux kernel source code installed.
You may now apply patch files or changes.

Select PLAY below to view a
video on configuring a
manual kernel build.

 View Video
VideoLesson9Configure
ManualKernelBuild(C2L

9S24). mp4

ftp://ftp.kernel.org/

C2L9S30

The company for which you work is running Linux computer systems. They
purchased a new piece of computer equipment that came with drivers for
Microsoft Windows and Apple OS/X.

The company’s internal development team modified the Linux kernel to
provide the functionality for the new hardware. They gave you an archive
with the full kernel code and told you to distribute to over 40 Linux
desktops in the company. From your training, you know you need to use a
distribution package such as RPM or DEB to do this, but it is impossible to
create this distribution from the archive the developers gave you.

Every Linux install contains a utility called “diff.” The diff utility compares
two files (or directories) and outputs the result in a machine parsable text
file. In the above scenario, we can use the diff utility to compare the
changed code to the original kernel package and then include the resulting
patch file in the build process.

The first step is to create the patch file using the diff command.

Required Reading:
Diff and Patch
How to create patch files

http://www.linuxtutorialblog.com/post/introduction-using-diff-and-patch-tutorial
http://linux.byexamples.com/archives/163/how-to-create-patch-file-using-patch-and-diff/

C2L9S31

The following is the procedure to create the patch file.

1. From the terminal window type cd ~/code/
2. In this directory you should have downloaded the kernel source archive.

If you have not done so, please return to C2L9S29 (two previous slides)
and follow the directions.

3. Make sure the only file in this directory is linux-2.6.xx.tar.bz2 (xx is the
release number).

4. Use the tar utility to un-archive the original distribution file by typing tar
xvjf linux-2.6.xx.tar.bz2 at the command prompt.

5. Copy the un-archived file to a new directory by typing cp –ar linux-2.6.xx
linux-2.6.xx-new (replace xx with the correct release numbers).

6. If you were given a patched directory (as in our scenario above) you
would not copy the original source. Instead, you would put the patched
directory into the code directory and skip the next two steps, since the
changes have already been made.

7. Change into the new directory by typing cd linux-2.6.xx-new
8. Make any changes that you wish to make. For practice purposes in the

video lesson, we are adding a file and changing a couple lines in other
files.

9. Once completed, change back into the code directory by typing cd ~/code
10. Use the diff command to create the patch file by typing diff –r –c --new-

file linux-2.6.xx linux-2.6.xx-new > my.patch

Required Reading:
Diff man page

Select PLAY below to view
a video on patch files.

 View Video
VideoLesson9CreatePat
chFiles(C2L9S26). mp4

http://linux.die.net/man/1/diff

C2L9S32

To check the patch file you created in the last slide, you will use the patch
command.

1. Change to the ~/code directory by typing cd ~/code
2. Remove all files from the code directory except the original linux-

2.6.xx.tar.bz2 and the my.patch file. Remember you can use the rm
filename command to remove files. Use rm –rf directoryname to
remove directories.

3. Un-archive the original archive file using tar xvjf linux-2.6.xx.tar.bz2
command. (Replace xx with the release numbers).

4. Change to the linux-2.6.xx directory by typing cd linux-2.6.xx
5. Apply the patch file using the patch command.
6. Type patch –p1 –i ../my.patch
7. You will get a list of files changed, and a confirmation the patch was

successfully applied. If you get errors, try the patch again from a fresh
directory after fixing errors.

8. Once the patch is successfully applied, verify that the patch worked.
9. Verify the patch by checking the contents of the files you changed, or

the files affected by the patch.

Required Reading:
Patch man page

Select PLAY below to view
a video on using patch
files.

Now that you have the patch file, include it into the rpmbuild/SOURCES
directory of your RPM-based system, or into the build scripts of the Debian
system. Remember to put into the SPECS/kernel.spec file in an RPM build
system in the patches section.

 View Video
VideoLesson9UsePatch

Files(C2L9S27). mp4

http://linux.die.net/man/1/patch

C2L9S33

The next step in the manual build process is to configure the kernel. In this
example, you will use the menu configuration since it works in terminal mode.

Note: remember to press [ENTER] after every command line entry.

1. From the terminal window access the Linux source directory by typing,

cd /usr/src/linux/
2. Type ls /boot/config* to list the installed configuration versions. Don’t

worry, the uname –r command will help you pick the correct version.
3. Copy the configuration file to your Linux source directory by typing,
 cp /boot/config-`uname –r` ./.config
4. Verify that the file is there by typing ls –la .config (you should see a single

file with today’s date).
5. Type make menuconfig to begin the configuration process. If it errors

out, examine the message. You may need to change your terminal screen
to a larger setting.

6. Using the menu options, change the configuration settings you wish to
change.

7. When complete, tab to the bottom of the menu screen and Exit.
8. Select Yes when asked to save the file.

You will return to a command prompt.

Select PLAY below to view
a video on manually
configuring the kernel.

 View Video
VideoLesson9Manually
ConfigureKernel(C2L9S

28). mp4

C2L9S34

The next step in the manual build process is to configure the kernel.
In this example, you will use the menu configuration since it works
in terminal mode.

Note: remember to press [ENTER] after every command line entry.

1. To manually build the kernel you want to begin in the Linux

source directory. Type cd ~/code/linux to get there.
2. Use the make command to build the kernel. Type make all
3. The compiler will take 2-3 hours to complete this task.
4. When completed, the command prompt will display. If you get

errors, fix them, or ask a developer for help.

We are not going to install the resulting files used in this example
because it is bad practice to do so. You can save your configuration
file .config and use it for one of the package build processes already
described in this lesson.

Select PLAY below to view
a video on manually
configuring the kernel.

Required Reading:
Building and installing Linux
kernel

 View Video
VideoLesson9Manually
BuildKernel(C2L9S29).

mp4

http://www.cyberciti.biz/tips/compiling-linux-kernel-26.html
http://www.cyberciti.biz/tips/compiling-linux-kernel-26.html

C2L9S35

Building kernel packages is one of the most important functions of
the Linux administrator. While a kernel can be built for one machine
without using the package management system, it is not considered
good kernel or package management to do so. The package
management system allows us to track changes, install, and uninstall
software. With kernel packages, the uninstall function is of great
importance in case of errors in the build process.

In this lesson you also explored the build process for a kernel without
a package manager that allows you to test your changes and perhaps
test code changes given to you by a developer. Kernel builds should
not be used in a production environment.

All software installed on a Linux machine should be built into
packages. Generally, administrators who update kernels without a
package management system are not respected or well-regarded.

