
This material is based on work supported by the
National Science Foundation under Grant No. 0802551

Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the author (s) and do not necessarily reflect the views of the National Science Foundation C3L8S1

U the

As a system administrator, you will most likely be
responsible for installing or administering a web server in
addition to your regular duties.

The most popular web server software is Apache.
Statistically, Apache is used more than all other web
servers combined. Chances are very high you will end up
with an Apache web server at some point in your career.

This lesson will introduce students to the popular Apache
Web Server application. You will explore Apache history,
HTTP protocol, Apache installation, configuration, and
security.

The final lab activity will allow you to download, install
and configure a working Apache server.

C3L8S2

Select PLAY below to review
the lesson introduction:

 View Video
VideoLesson8HTTPApachen

troduction(C3L8S2).mp4

U the

You should know what will be expected of you when
you complete this lesson. These expectations are
presented as objectives. Objectives are short
statements of expectations that tell you what you
must be able to do, perform, learn, or adjust after
reviewing the lesson.

Lesson Objective:

Given a need for a web server, a student will be able
to defend the use of free alternatives such as
Apache and will install and configure an appropriate
web server as per industry standards.

C3L8S3

In this lesson, you will explore:

 Apache Webserver
o Purpose & Benefits
o HTTP

 Apache Implementation
o Installation
o Configuration
o Directives
o Security

C3L8S4

A web server is probably the most over looked and yet most important tool
computer users work with on a daily basis. Webservers perform their tasks
outside users’ immediate operating system. Consequently, users have no need
to worry about it. They trust that it works and remains reliable for a long time.

The Internet works on a client/server basis. For example, when you surf the
Internet, you may use your local machine’s browser to access Yahoo at
http://www.yahoo.com . The browser and the operating system work together
to send the request for Yahoo out to the Internet and locate the web server you
are attempting to access. The web server’s main job is to supply the prewritten
content (web page) back to the user who requested it. Your web browser then
receives the HTML text, and converts it in to the page that you view.

During the infancy of the Internet, web users used to use an application called
Gopher that retrieved content from web servers. In those days, most of the
web content consisted of text files and was not very large in size compared to
today’s documents. In the mid ’90s, web developers started looking for ways to
add multimedia (pictures, videos, and sound) to web pages. Html 1.0 was
developed, and the term “surfing the Internet” took on new meaning.
Developers also needed to create a way to provide these multimedia pages to
users when requested, and so Apache was created in 1995 to meet this need.

C3L8S5

Select PLAY below to
learn about Apache:

 View Video
VideoLesson8ApachePt2(C

3L8S6).mp4

http://www.yahoo.com/
http://www.yahoo.com/
http://en.wikipedia.org/wiki/Gopher_(protocol)

Apache is a full-featured, powerful Web
server available absolutely free. The Apache
Software Foundation that develops Apache
does not derive revenue from the Apache
server software, so it cannot afford to offer
robust technical support.

Consequently, amenities such as phone or
online support are not included with
Apache. However, abundant documentation
and support is available, although such
support may not match the offerings from
commercial software.

Apache is also free in the sense that the
source code is publicly available. Computer
savvy programmers can modify the source
code to make a better product.

C3L8S6

For Review:
• Apache Software Foundation
• Apache Wiki

http://www.apache.org/
http://www.apache.org/
http://wiki.apache.org/httpd/FAQ

You can get the source code for Apache and
modify it to your heart’s content. Most
people do not use the source code to
modify the default operations of Apache.
Instead, they modify the way in which the
software is compiled. In other words, they
modify which pieces are added or used in
their installed version.

If you need a mean, lean server, you can
recompile the source code to create a
custom server with only the options you
need. That said, if you ever find a problem or
need to make a rudimentary change to the
Apache source code, you can.

C3L8S7

Required Reading:
• GNU Licenses

http://opensource.org/
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html

Apache is available for multiple platforms,
including the following:

• Unix
• Linux
• Windows (9x through Win7, although server

versions—NT/2000/XP—are preferred)
• Novell NetWare
• Mac OS X (BSD under the GUI)

Besides a few small details, such as the
placement of its files in the file system, Apache
operates in the same manner on the platforms
mentioned above.

C3L8S8

Required Reading:
• Apache Server Project

http://www.webopedia.com/TERM/C/cross_platform.html
http://httpd.apache.org/download.cgi
http://httpd.apache.org/ABOUT_APACHE.html

Apache is maintained by the Apache Software
Foundation and is under continual development
and improvement. Bug and security fixes take
only days to find and correct, which makes
Apache the most stable and secure web server
available.

Tech Tip!

The relative stability and security of any web
server depends on the system administrator as
much as, if not more than, the underlying
software.

Another advantage of rapid development and
releases is the robust feature set. New
Internet technologies can be deployed in Apache
much more quickly than in other web servers.

C3L8S9

Required Reading:
• Apache Development

http://www.webopedia.com/TERM/R/Rapid_Application_Development.html
http://httpd.apache.org/ABOUT_APACHE.html
http://httpd.apache.org/ABOUT_APACHE.html

The name 'Apache' was chosen from respect for
the various Native American nations collectively
referred to as Apache, well-known for their
superior skills in warfare strategy and their
inexhaustible endurance.

The name Apache also makes a cute pun on "a
patchy web server" —a server made from a
series of patches—but this was not its origin.

The group of developers who released this new
software soon started to call themselves the
"Apache Group."

C3L8S10

Required Reading:
• Apache HTTP Server
• HTTP Server Project

http://en.wikipedia.org/wiki/Apache
http://en.wikipedia.org/wiki/Apache_HTTP_Server
http://httpd.apache.org/ABOUT_APACHE.html

Apache continues to implement its features with distinct
pieces, or modules. Utilizing a modular approach to
feature implementation enables Apache to be deployed
with only the amount of overhead necessary for the
features desired. Modularity also allows third parties to
develop their own modules to support their technologies.

Apache supports almost all Internet Web technologies,
including proprietary solutions such as Microsoft’s
FrontPage Extensions. Apache supports various HTTP
protocols, scripting, authentication, and platform
integration.

Visit the Apache module Web site for information on the
modules included with Apache and the registered third-
party modules. For our purposes, we care about the
following capabilities:

• Robust HTTP delivery
• Configurable, reliable security
• Integration with PHP and MySql
• CGI and other scripting integration

C3L8S11

For Review:
• Web server survey

http://modules.apache.org/
http://modules.apache.org/
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.php.net/
http://www.php.net/
http://www.mysql.com/
http://www.webopedia.com/TERM/C/CGI.html
http://news.netcraft.com/archives/category/web-server-survey/
http://news.netcraft.com/archives/category/web-server-survey/

C3L8S12

C3L8S13

HTTP (Hypertext Transfer Protocol) is a fairly simple
protocol. A client requests data from a server, the
data is parsed against a list of content types, and the
server sends the data to the client via the system
required by the content type.

Such content types are referred to as Multipurpose
Internet Mail Extensions (MIME). These extensions
enable non-ASCII data to be sent over the Internet.
The HTTP server uses MIME types to determine how
to send specific files.

Today’s HTTP specification is quite complex.
Interested readers should visit the
World Wide Web Consortium Web site www.w3.org
for more information.

Required Reading:
• What is HTTP?

Select PLAY below to
learn about HTTP:

 View Video
VideoLesson8HTTP(C3L8S14).mp4

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.mhonarc.org/~ehood/MIME/
http://www.w3.org/
http://www.boutell.com/newfaq/definitions/http.html

C3L8S14

Most web traffic is conducted over TCP port 80. However, as the web
has matured, several other ports are used to serve data to clients.
Port 443, for example, provides secure web connections via SSL.
Other protocols are also available via a standard browser thanks to
Netscape’s innovative plug-ins. These plug-ins (now used by most
browsers) enable other applications to send and receive data through
the browser— not always via HTTP on TCP port 80.

You can configure Apache to operate on any port. Alternative port
options include TCP ports 81, 85, and 8080. Most administrators
choose to operate Apache on an alternative port only for the
following reasons:

• The server needs to be hidden from casual hackers (who look for

it on port 80).
• More than one server is running on a given machine.
• Some other port conflicts or an application needs the alternative

port.

Note:

Some applications and
services (like plugins) that
rely on the browser
interface for
communication
do not use the configured
port—80 or otherwise—
for their communication.

When changing the
default Apache port, you
should pick a port above
1023 to avoid conflicts
with existing Internet
services.

C3L8S15

C3L8S16

Apache is a full-featured HTTP server, yet, it is
surprisingly easy to install. Apache is server
software, so you must consider the many
security risks and implications on your system
after Apache is installed.

Students are advised to be cautious in
installing and running the Apache server
because it will provide services that could
allow system access to remote users if
improperly configured.

Navigate to Apache’s server project and
download the latest version of the software
from one of the many mirrors provided. On
the next few slides you will learn to install
Apache.

http://httpd.apache.org/download.cgi
http://httpd.apache.org/download.cgi
http://httpd.apache.org/download.cgi

C3L8S17

Most Linux distributions have their own packaging scheme that
allows programs to be distributed and installed on systems. Red
Hat distributions, for example, have the RPM (Red Hat Package
Manager) format. The advantages to using packages are as follows:

 The programs can typically be located and installed very easily.

For example, you can easily find packaged programs on the Red
Hat network, and you can download and install them by using
the Red Hat Update Agent. Ubuntu uses a Debian package
manager and can be utilized in a similar manner.

 Packages typically handle dependency issues for you. That is, if
you need other tools or programs to use a particular program,
the package has those dependencies encoded in it and will alert
you of this requirement before you use the new program.

 The packages expand themselves, installing their components
into the correct directories—typically with one command.
Applications installed from packages also follow the base
distribution’s conventions for locations of binaries and
configuration files.

Select PLAY below for help
installing Apache:

 View Video
VideoLesson8InstallApac

he(C3L8S18).mp4

C3L8S18

Redhat and Fedora currently ship with Apache Version 2 as part of the installation
and can be selected from the package manager. You can also use the console rpm
command to install a package. The form of the command for RPM installation is
as follows:

rpm –i <rpm file name>

The rpm application inspects the package, tests the system for any dependencies,
and installs the package. If you use the RPM package to install Apache, the
various pieces are installed according to Red Hat’s file location scheme. The
binary is placed in /usr/sbin and the configuration files in /etc/httpd.

You can test whether the server was installed by running it with the –v parameter,
as follows:

/usr/sbin/httpd –v

The server should respond with its version and build date.

Start the server by using the apachectl script with the following command:
/usr/sbin/apachectl start

Note:

Verify your
downloads
using PGP or
MD5 Signatures

Required Reading:
• Verification

http://httpd.apache.org/dev/verification.html

C3L8S19

After Apache is installed and running, you can test it by pointing a browser at
the machine running the server. On the server machine itself, you can point a
browser to the following address:

http://localhost

If you are using another machine to connect to the server, replace localhost
with the server’s fully qualified name or its IP address. To stop the server, use
the following command:

/usr/sbin/apachectl stop

On Linux machines, you can use the process status command, ps, to determine
whether the server is running. Most Linux distributions report the Apache
server processes as httpd, but some report it as apache. Using one of the two
following commands should display the Apache processes currently running:

ps –A | grep “httpd”
or
ps –A | grep “apache”

Note:

An unmonitored Web
server can present a
security hazard to the
system running it and to
attached network(s).

You should immediately
implement security
measures or stop the
server whenever you do
not need it.

C3L8S20

Knowing the location of various Apache files is important. You need
to edit the configuration files, write scripts to access the
executables, and view the log files. Apache installs in a variety of
directories, depending on the operating system you use.

Depending on your installation, you will find the key files by:

• Searching for the file apache or httpd (main application)
• Doing a configuration search for the file httpd.conf (main

configuration file)

Other key files:

• Search in modules for the file mod_access.so
• Search for the file access.log or error.log. (Key log files)

Select PLAY below for help
locating Apache files:

 View Video
VideoLesson8ApacheFiles

(C3L8S21).mp4

C3L8S21

The following sections detail the various parts and parameters
in the httpd.conf file. On Linux, you can usually find this file in
the following location:

/etc/httpd/conf/httpd.conf

However, you might also find the configuration file in these
locations:

/usr/local/apache2/conf/httpd.conf

Note:

If you have trouble finding the httpd.conf file, use your
operating system’s search feature to locate it.

Required Reading:
• Platform specific help

http://wiki.apache.org/httpd/Platform
http://wiki.apache.org/httpd/Platform

C3L8S22

While you are learning about the httpd.conf file, it is wise
to take two precautions:

1. Back up the original file to a secure location.
2. When making changes to the file, comment out the old
settings instead of removing them or typing over them.

You can change the default configuration file by starting
Apache with the –f configuration option, followed by the
full path to an alternative configuration file, as shown in
the following example:

/usr/local/apache2/bin/apachectl start –f
/usr/local/apache2/conf/alt-httpd.conf

Open the file with your favorite text editor and follow
along through the rest of this lesson.

http://wiki.apache.org/httpd/Platform

C3L8S23

httpd.conf is a plaintext file filled with settings commonly known as directives. These directives are unique
keywords followed by the setting for the directive. For example, one of the directives in the configuration
file follows:

DocumentRoot “/var/www/html”

This directive tells Apache that the Document Root, the main directory for content, is /var/www/html.

Note that all directives observe the following syntax:
Directive Setting1 Setting2 Setting3...

Note
Directives and their options should be contained on one line. If you need to split a directive over two or
more lines, use a backslash (\) at the end of the incomplete lines to signal Apache that the directive is
continued on the following line.

Most directives are preceded by a comment line (or several) detailing the setting. For example, the
DocumentRoot directive is preceded by the following comments:

DocumentRoot: The directory from which documents will be served. By default, all requests are taken
from this directory, but symbolic links and aliases may be used to point to other locations.

C3L8S24

Note:
All directive directory
name arguments
should be full paths
to the specified
directory or a relative
path from the
directory specified in
the ServerRoot
directive.

Likewise, all file name
arguments need to
specify the full path
to the file or a
relative path from the
directory specified in
the ServerRoot
directive.

ServerRoot The root directory in which Apache files (binaries, modules, and
config files) are stored. (Argument: directoryname)

PidFile The file where the server should store its process ID when it starts.
(Argument: filename)

KeepAlive Indicates whether the server should allow persistent connections
(allow clients to send more than one request per connection). Setting this
directive to On allows for better performance for connected clients. (Argument:
On|Off)

Listen The address and port on which the server should listen for connections.
This directive enables you to specify the port and particular IP on which the
server should listen. If you have only one server (physical or virtual) and you
want it to listen to all incoming traffic, specify the port only. (Argument:
ipaddress:port)

LoadModule Loads the specified module. (Arguments: status_module
modulepath/modulename)

ServerAdmin The address for the Webmaster/administrator. This address is
used on all server-generated pages. (Argument: emailaddress)

C3L8S25

ServerName The server’s fully qualified host name. (Argument: qullyqualifieddomainname)

DocumentRoot The root directory for server content. (Argument: directoryname)
UserDir The directory to add to user directories when they are requested. For example, on Windows,
the default My Documents/My Website is added to the user directory C:\Documents and
Settings\username\. (Argument: directoryname)

AccessFileName The filename that the server should look for in each directory for additional access
rules. (Argument: filename, usually .htaccess)

TypesConfig The file the server should use to determine MIME types. (Argument: filename)

DefaultType The default MIME type the server should use for a file if it is unable to determine
otherwise. (Argument: MIMEType)

HostnameLookups Indicates whether the server should look up the hostname of each client or only
log its IP address. Note that turning this option on can significantly increase the server load.
(Argument: On|Off)

ErrorLog The location of the default error log. (Argument: filename)

C3L8S26

LogLevel The amount of information the server records to log files.
The default value, warn, provides the mid-range of information.
(Argument: emerg|alert|crit|error|warn|notice|info|debug)

LogFormat The format the server should use to record information in the
log files. This directive’s argument uses several placeholders and
variables. See the documentation on the Apache Web site for
explanations of each. (Argument: logfileformat)

CustomLog The main log file and the information to be stored in the file.
This directive takes two arguments: the first is the file in which to store
the log information and the second is the type of information to store. If
the second argument is common, all access info (including virtual host
files) will be logged here. The second argument can also be a format
string for the log file to follow. (Arguments: filename
common|logfileformat)

For more information on directives and their use, read the Apache manual
online.

Review the Apache
manual online for
more information
about directives.

For Review
• Directive reference

http://httpd.apache.org/docs-2.0/mod/quickreference.html
http://httpd.apache.org/docs/2.0/mod/quickreference.html

C3L8S27

Apache has a very flexible access scheme, the details of which are
covered in a future lesson. However, it is important to cover the
rudimentary Apache access scheme while reviewing the httpd.conf file.

Apache has two basic access schemes: allow and deny. The allow scheme
provides access to anything specified. Deny denies access to anything
specified.

Typically, you specify which rules you want to run first, allow or deny. In
most cases, you want to allow everyone and make exceptions to deny or
deny everyone and make exceptions to allow. Allow everyone access
scheme works well for a simple public server but does not create the
most secure site because you must think of every possible instance you
want to deny.

The deny everyone scheme is a very restrictive security model because you
must think of every possible instance you want to allow.

Review the Apache
manual online for
more information
about directives.

For Review
• Directive reference

http://httpd.apache.org/docs/2.0/mod/quickreference.html

C3L8S28

The Order directive controls the basic model. The directive’s syntax is as follows:
Order allow,deny or deny,allow

Individual Allow and Deny directives specify what to allow and what to deny. The syntax
for the Allow and Deny directives is as follows (where location is one of those in the list):

Allow|Deny from location

Fully Qualified Domain Name (FQDN)
For example, apache.org

IP address
For example, 192.168.1.1

A partial IP address (the first few octets)
For example, 192.168

An IP address and subnet mask
For example, 192.168.1.0/255.255.255.0

The text all

C3L8S29

As installed, the basic Apache security model is as follows:

Order allow,deny
Allow from all

This security model means process the Allow rules first (Allow from all), and then the
Deny rules. Because Allow is specified as all, only those hosts that match subsequent Deny directives
are actually denied access. For example, later in the httpd.conf file, you have the following directives:

<Files ~ “^\.ht”>
Order allow,deny
Deny from all
</Files>

These directives prohibit anyone from viewing files that begin with .ht (such files are typically Apache
access or password files). In this case, the Order directive is not needed because of the earlier Order
directive. However, it is good form to specify the order before every Deny or Allow directive to ensure
that the Deny or Allow directive functions as intended.

C3L8S30

Unless your Apache server is behind a firewall or is
otherwise inaccessible from the Internet, you probably
want to lock it down with appropriate directives.

If you access the server from only one subnet, specify that
subnet as the only access point. An example of this
scheme would be the following:

Order deny,allow
Deny from all
Allow from ip/netmask

Simply change the default permissions for the document
root and any other areas you want open or restricted.

Required Reading
• Apache Module Host

http://httpd.apache.org/docs/2.2/mod/mod_authz_host.html

C3L8S31

By default, Apache maintains two log files, access.log and error.log. These logs record successful client
access and errors reported by the Apache server, respectively. The LogLevel and LogFormat directives govern
the amount of information stored in each log file.

A typical access.log entry resembles the following:

192.168.10.25 - - [20/Apr/2008:22:01:25 -0500] “GET / HTTP/1.1” 200 1494
192.168.10.25 - - [20/Apr/2008:22:01:25 -0500] “GET /apache_pb.gif HTTP/1.1” 200 2326

In the preceding case, a client from IP address 192.168.10.25 successfully made two requests on April 20
around 10:00 p.m. Both requests show status 200 (OK). The latter request was for a graphic, the Powered By
Apache logo. (The request was for the Apache status page.)

A typical error.log entry resembles the following:

[Sat Apr 20 22:00:45 2003] [error] [client 192.168.10.16] client denied by server
configuration: C:/Program Files/Apache Group/Apache2/htdocs/

In the preceding case, a client was denied access from IP address 192.168.10.16 because of a server
configuration. Reviewing log files regularly can help you spot system errors, misconfigurations, and hacker
attempts to compromise your server. Because each log contains separate information, you should analyze
both logs concurrently.

C3L8S32

Do not implement doubtful scripts. Verify every script you put into place
for vulnerabilities and security holes—especially if the script(s) accesses the
raw file system.

Ensure that scripts do not run as the root or administrator user. If a
security issue exists with a script, it would be disastrous to allow someone
exploiting that issue access to the administrator account!

Do not allow users of your web server to implement scripts without your
express permission (and check it yourself). Many scripts are available on
the Internet and can be installed by simply copying them to the appropriate
cgi-bin directory. However, most scripts that are freely available were not
written with strict security in mind. Be sure to check for security holes
before allowing users to implement their own scripts.

Remove unneeded script directories from the file system and the Apache
configuration file. Most administrators recommend removing the
ScriptAlias cgi-bin from the Apache configuration file and naming your
script directories something other than cgi-bin, or at least not placing them
so prominently at the root of every domain.

C3L8S33

Ensure that dangerous scripts have restricted access. Using the
methods described earlier in this session, protect script use by
unwanted users by restricting access to the directories or to
individual files.

Keep your copies of the OS and Apache up-to-date. Most
operating systems have useful auto-update features—Windows
has the Windows Update service, Red Hat Linux has the Red Hat
Network. An operating system and Web server that are kept up-
to-date are inherently more secure.

Add only one feature to your site at a time, securing each new
feature before adding another. New web developers and system
administrators are quick to add multiple features, lights, buzzers,
and whistles to their site. However, each new feature has the
potential to add another security vulnerability. It serves you well
to ensure that the features you have are secure before adding
more.

C3L8S34

Add only features you really need—and survey each carefully
before adding.
Many scripts, programs, and server add-ons are available for you
to add features to your web server. However, each has the
potential of adding more security holes. Make sure the features
or programs you add come from a reliable source that updates
the software frequently. Read reviews and newsgroup messages
about the software before implementing it. As they say, an ounce
of prevention is worth a pound of cure.

Monitor your logs. The easiest and cheapest thing to keeping
your system safe is to properly and regularly check you logs. Look
for entries that do not seem to fit the normal patterns, and make
sure to follow up on the smallest of changes in your system
operation and performance.

In this lesson, you were to the Apache Web Server.
You learned to install and configure a basic web
server in Linux. Additionally, you learned to install
Debian by performing a netinstall, configuring the
web server, reviewing the http protocol, and
discussing a few web services and their associated
ports.

With a nearly 60% market share, it is almost certain
you will encounter an Apache web server at some
point in the future. Whether in a professional
environment or on at home network, students
should have the necessary skill sets to install and
maintain an Apache web server after completing
this lesson.

C3L8S35

http://httpd.apache.org/

