
This material is based on work supported by the
National Science Foundation under Grant No. 0802551

Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the author (s) and do not necessarily reflect the views of the National Science Foundation C4L6S1

U the

In this lesson, you will explore the principles behind relational database
servers, how they replaced flat files, and how they evolved. In this
introduction, you will discuss the use of databases on the Internet.

Following this introduction, you will install two different database
systems—MySQL database and a PostgreSQL database. The biggest
difference between the two is that MySQL has a commercial version and
PostgreSQL is free. However, MySQL will run on almost any operating
system and is extremely well supported, while PostgreSQL is still
primarily a Linux software package (although that is changing).

This lesson does not teach you SQL, the structured query language used
to access data in relational databases such as MySQL and PostgreSQL.
This is a subject found in many advanced database management
courses. We will concentrate on the installation and setup of the
packages.

Understanding dynamic databases is important because of their critical
importance to business, commerce, storage, search, sorting, and
Internet use.

C4L6S2

U the

You should know what will be expected of you when
you complete this lesson. These expectations are
presented as objectives. Objectives are short
statements of expectations that tell you what you
must be able to do, perform, learn, or adjust after
reviewing the lesson.

Lesson Objective:

Given the need to store and retrieve structured data,
the student will install and configure a database server
as per industry standards.

C4L6S3

In this lesson, you will explore:

History of Database Development

o Relational Databases
o Intro to SQL
o Databases and Internet
o PostgreSQL Vs MySQL

 Installation & Configuration
o Installing MySQL
o Installing PostgreSQL
o Create Users
o Create Backups

C4L67S4

C4L6S5

Required Reading
• History of Database
• Database Management

In the 1960s, the computer industry began to recognize the need to
efficiently manage larger quantities of data because their current
indexing process was tedious and time consuming. Programmers had
to “step-through” flat text files to find the data they needed. For
example, if they had a list of people living in the United States, and
they wanted to identify a specific person, programmers had to write
a program that would step through every line of the database file to
find the record with that person’s information.

The need to create a better database structure that allowed faster
and better searches gave rise to new ideas about the organization of
data. The 1970’s saw the first relational database. The idea behind the
relational database was that every record was a fixed length and had
a key. This key could be search on, or linked to other records
associated with the primary record.

https://help.ubuntu.com/community/Nagios2
http://math.hws.edu/vaughn/cpsc/343/2003/history.html
http://philip.greenspun.com/panda/databases-choosing

For instance, a common use of a database system is to track information
about users including their name, login information, various addresses, and
phone numbers. In the navigational approach, all of these data fields would
be placed in a single record, and unused items would simply not be placed
in the database. In the relational approach, the data would be normalized
into a user table, an address table, and a phone number table (for instance).
Records would be created in these optional tables only if the address or
phone numbers were actually provided.

Linking the information back together is the key to this system. In the
relational model a person’s information may be contained in multiple
records spread across different tables. However, each related record is
linked back to the person using a unique key, as shown in the diagram on
the right.

When information is collected about a user, information stored in the
optional (or related) tables would be found by searching for this key. For
instance, if the login name of a user is unique, addresses and phone
numbers for that user would be recorded with the login name as its key.
This "re-linking" of related data back into a single collection is well
optimized for databases but not as well for traditional computer languages.

C4L6S6

Required Reading
• Relational Database

https://help.ubuntu.com/community/Nagios2
http://www.readwriteweb.com/enterprise/2009/02/is-the-relational-database-doomed.php

The next step for database designers was the development,
introduction, and standardization of a Structured Query Language (or
SQL).

SQL was a universal set of instructions with the sole purpose of
database operations. The query language was developed at IBM by
Donald D. Chamberlin and Raymond F. Boyce in the early 1970s. SQL
statements contain the following elements:

1. Clauses: constituent components of statements and queries

(sometimes optional)
2. Expressions: can produce scalar values or tables consisting of rows

and columns
3. Predicates: These specify the conditions that should be evaluated

(such as true / false statements)
4. Queries: These retrieve data based on specific values (the most

important part of SQL)
5. Statements: These control program flow and transactions. May also

affect connections to the database

C4L6S7

Required Reading
• Introducing SQL

https://help.ubuntu.com/community/Nagios2
http://en.wikipedia.org/wiki/SQL

In the 1980’s, the growth of the object-oriented database occurred.
During this time, developers began to looking at data in databases
as objects. For example, a person’s data in a table may contain his
or her name, address, and phone number. If you later added their
height, weight, and blood type to the database, these would be
added as data that belonged to the same person and would not be
treated as extraneous data. This view of related data objects
allowed developers to create relationships between objects and
their attributes rather than to individual fields.

Another change that occurred in the late 1980’s and still exists
today is the need for increasing speed and reliability of databases.
As the storage and usefulness of data grows, it is imperative that
the data is accessible and correct. It is no longer acceptable for a
record to vanish from a database.

C4L6S8

Recommended Reading
• What is SQL

https://help.ubuntu.com/community/Nagios2
http://www.sqlcourse.com/intro.html

C4L6S9

As the speed and the reliability of the internet has grown
many consumer and corporate functions are being done on
large databases. Services offered by Amazon, Facebook,
Google Mail, Google Applications, and Microsoft Office 2010
rely heavily on powerful databases.

Additionally many corporations are outsourcing functions
that were previously managed in-house, to cloud services
and databases where reliability is extremely important.
Examples of these services include directory searches and
medical records. Directory searches allow users to index and
locate data on the Internet. The Google search engine is one
example of directory search.

Medical records also use relational databases and require an
extremely high level of security and reliability because
doctors rely on the information contained in patient records
to make life and death decisions. In today’s Internet
connected age, the use of fast, secure, and reliable
databases is critical to the personalization and efficiency of
the Internet.

MySQL and PostgreSQL are widely used databases on the Internet. A
comparison between the two systems must begin with how they were
developed. MySQL’s developers initially focused on speed while the
developers of PostgreSQL focused on stability and standards. This
difference meant that MySQL was most often the faster of the two. In
more recent years, the differences between the two are not as
significant as development has progressed. The choice to use either
one is usually based on personal preferences or the popularity of the
application with developers.

MySQL is widely popular among various open-source web development
packages. The MyISAM engine (an older storage engine for MySQL) is
often the only database engine offered by webhosting providers. Many
web developers use MySQL for their development efforts. Thus,
MySQL became widely popular in web development, and even labels
itself as "The world's most popular open source database," a claim that
may be spurious given the broad deployment of other open source
database management systems (DBMS) such as SQLite, which is often
used by small applications that need internal database functionality
without requiring the feature set of a "full sized" DBMS.

C4L6S10

Required Reading
• MySQL & PostgreSQL

https://help.ubuntu.com/community/Nagios2
http://www.wikivs.com/wiki/MySQL_vs_PostgreSQL

Part of the reason MySQL is so popular is a common
perception that MySQL is "easier" to use than other
databases -- particularly PostgreSQL.

That perception arose years ago and has fed itself by word of
mouth, to the point where accuracy has little or nothing to
do with MySQL's current reputation for being comparatively
easy to use. In fact, in recent years, PostgreSQL has made
significant changes that have "closed the gap“ or even
improved its ease of use beyond that of MySQL. Of course,
the validity of such claims is as open to question as those of
MySQL.

In this lesson, we will install MySQL first, but only because it
appears first in the alphabet!

C4L6S11

Required Reading
• Why PostgreSQL?

https://help.ubuntu.com/community/Nagios2
http://wiki.postgresql.org/wiki/Why_PostgreSQL_Instead_of_MySQL_2009
http://wiki.postgresql.org/wiki/Why_PostgreSQL_Instead_of_MySQL_2009

MySQL & PostgreSQL

C4L6S12

To begin your database installation, regardless of the version you wish to install, you will need to
update your Linux installation to the most recent version of software. For this lesson, we are using
Fedora Linux since it is based on RedHat which is most often used in commercial server applications.
Ubuntu is more often used as a desktop application.

Please follow these directions:

1. Open a terminal window (or console).
2. Type su and enter the root password when requested (if on an Ubuntu machine you may have

to type sudo su)
3. Type yum upgrade
4. Accept any and all packages that may need to be installed along with any dependencies.
5. Do not log out or exit your console when complete.

Your machine is now updated using the “yum” package manager to the most current version of all
packages. Now, we can begin to install our software. As we move forward, you will notice that Step
2a instructions relate to MySQL and Step 2b relates to PostgreSQL (all the Step Xa’s are MySQL and
all the Step Xb’s are PostreSQL). This format will allow you to compare the steps required for each
package.

C4L6S13

Required Reading
• MySQL on Fedora
• PostgreSQL on Fedora See example of system prep and update on next screen.

https://help.ubuntu.com/community/Nagios2
http://www.fedoraforum.org/forum/showthread.php?t=255254
http://library.linode.com/databases/postgresql/fedora-14

C4L6S14

System prep and update
prior to install

Prior to starting and configuring MySQL,
we need to install the latest packages.
Follow these directions from your console
while logged in as root:

1. Type: yum install mysql mysql-server
2. Accept any additional dependencies

that need to be installed.

The MySQL package in step 1 contains all
the client side (command line) utilities
that are used with MySQL. The MySQL-
server package contains all the server
side utilities.

If you are installing a workstation that will
be accessing another MySQL server, you
need only install the MySQL package, not
the MySQL-server package.

C4L6S15

Screenshot showing installation packages on Fedora

C4L6S16

Prior to starting PostrgreSQL you must install both the client and
the server package. Please follow these directions from your
console logged in as root. See the next screen for a screenshot of
the installation process.

1. Type: yum install postgresql postgresql-server
2. Accept any dependencies or additional software that needs

to be installed.

The PostgreSQL package in step 1 contains all the client side
(command line) utilities used with PostgreSQL. The PostgreSQL-
server package contains all of the server side utilities. If you are
installing a workstation that will be accessing another
PostgreSQL server you need only install the PostgreSQL package,
not the PostgreSQL-server package.

Once the software packages are installed, we will now begin the
configuration process.

C4L6S17

System prep and update

To start the MySQL server from
your command line window,
follow these instructions:

Type: /etc/init.d/mysqld start

The server will create the initial
table structure and provide a
reminder to set the root
password for your installation.

C4L6S18

To start the PostgreSQL database, use the init.d scripts but rather the service utility to initialize
the database cluster first. From your command line terminal please follow these directions:

1. Type: /etc/init.d/postgresql
2. (You will get an error message stating PostgreSQL was never previously started. This is OK.)
3. Type: service postgresql initdb
4. Type: /etc/init.d/postgresql start

The server will create the initial table structure. Your next step will be to start PostgreSQL in step
4 above. At this point, your PostgreSQL database has started and running alongside your MySQL
database. Next, we need to secure both structures by changing the root (administrative)
passwords.

C4L6S19

Screen shot of PostgreSQL
server starting

The first thing any Linux administrator needs to do with a MySQL database is to set the root user and
administrative account passwords. The database server is installed without any of these passwords
installed. Fortunately, there is a utility installed with MySQL that makes setting passwords an easy
process. From your command line console please follow these instructions:

1. Type: /usr/bin/mysql_secure_installation
2. Press Enter when asked for the database root password. (Default setup does not have a

password.)
3. Choose Y when asked if you want to set a new password.
4. Enter your new database administrator password the same way twice.
5. Choose to remove anonymous users when asked.
6. Choose to disallow root login from remote servers when prompted.
7. Choose to remove test database when prompted.
8. Choose to reload the privilege tables when prompted.
9. You should get a complete message when the script is done.

You just added a password for root access, and you did not allow remote root access to the database
from a second machine. Later, you will set a user with admin rights. Your current configuration does
not allow anonymous users (which are a database administrator’s worse nightmare and provide a real
security threat). One of the first rules of database security is refuse setups from others including
developers. Consequently, you removed the test table. Finally, you reloaded the privileges table which
includes all access-related information.

C4L6S20

Screenshot showing the
process of securing a MySQL
database

Required Reading
Secure MySQL from Attack

C4L6S21

http://dev.mysql.com/doc/refman/5.0/en/security-against-attack.html

Screenshot showing the
process of securing a MySQL
database

C4L6S22

As with MySQL, the first step is to secure PostgreSQL and disallow access to the administrator user.
With PostgreSQL, the admin user is by default named “postgres.” Follow these directions from your
console login. See the screen shot on the next slide for more information.

1. Type: sudo –u postgres psql template1
2. You will get an error message about a directory change.
3. At the template1=# prompt type:
 ALTER USER postgres WITH PASSWORD 'NewAdminDatabasePassword';
4. In step 3, change the NewAdminDatbasePassword to a password you will remember.
5. Type: vi /var/lib/pgsql/data/pg_hba.conf
6. Scroll down to the bottom of the file and change the words ident to md5
7. Type: :x to save and exit vi.
8. Type: /etc/init.d/postgresql restart

C4L6S23

Now, if you re-type the string in step 1 above, you
should get a password prompt. Enter your new
administrative password and you should be able
to access the database.

Remember \q will exit. At this point, your
PostgreSQL database is up and running. Next we
need to setup access from a remote machine. Screen shot of changes made to the PostgreSQL admin account

C4L6S24

Screenshot showing the
process of securing a
PostgreSQL database

Required Reading
Secure PostgreSQL from
Attack

http://www.howtoforge.com/secure-postgresql-using-two-factor-authentication-from-wikid
http://www.howtoforge.com/secure-postgresql-using-two-factor-authentication-from-wikid

Having a single administrative user and using that account for all work on a
MySQL server is extremely insecure. Each database should have an admin user
and each actual user should have his or her own user account. For this activity,
we are going to create an additional user on your database to use for everyday
activities. From your root console terminal follow these directions: (See
screenshot on next slide.)

1. Return to your root console window and type: mysql –u root –p
2. Enter your admin password at the prompt
3. Type: create database foo;
4. Type: grant all on foo.* to testuser@’%’ identified by ‘Test1234’;
5. Type: \q
6. From the shell prompt type: mysql –u testuser –p foo
7. Enter your new password
8. You should now be in the MySQL shell as your new user. This user now has

access to control everything on the foo database that you created in step 3.
9. Type: \q to get back to the command line shell.

Now you have a configured MySQL database that is accessible under either root
or testuser with passwords. There is also a single database created named “foo”.
Next, we will do the same thing with your PostgreSQL installation.

C4L6S25

Required Reading:

 Create a user
 Create database
 Create table

https://help.ubuntu.com/community/Nagios2
http://www.databasef1.com/tutorial/mysql-create-user.html
http://www.databasef1.com/tutorial/mysql-create-database.html
http://www.tizag.com/mysqlTutorial/mysqltables.php

C4L6S26

Screenshot showing the
creation of a new user on a
MySQL database

Since we now have a single user “postgres” on our postgresql database
system we need to create some additional users . From your root console
terminal follow these directions:

1. Return to your root console window and type:
 sudo –u postgres psql template1
2. Enter your admin password at the prompt.
3. Type: create database foo;
4. Type: create user testuser with password ‘Test1234’;
5. Type: grant all privileges on database foo to testuser;
6. Type: \q
7. From the shell prompt type: mysql –u testuser –p foo
8. Enter your new password
9. You should now be in the MySQL shell as your new user. This user

now has access to everything on the foo database you created in
step 3.

10. Type: \q to get back to the command line shell.

Now you have a configured PostgreSQL database that is accessible under
either root or testuser with passwords. There is also a single database
created named foo.

C4L6S27

Required Reading:

 PostgreSQL user
 PostgreSQL database
 PostgreSQL table

For Review
 Data types

https://help.ubuntu.com/community/Nagios2
http://www.postgresql.org/docs/8.3/static/sql-createuser.html
http://www.postgresql.org/docs/8.3/static/sql-createdatabase.html
http://www.postgresql.org/docs/8.3/static/sql-createtable.html
http://www.postgresql.org/docs/9.0/static/datatype.html

Screenshot showing new user
being added to PostgreSQL
database

C4L6S28

After setting up the database and adding a user, we need to backup the database. The database structure
as it exists on the filesystem does not lend itself to a proper backup/restore sequence. The best way to do
this backup is to dump the data to a text file and store that text file on the backup media.

C4L6S29

The MySQL package is installed with a tool to backup the database. From
a command line console, follow these directions:

1. Type: cd
2. Type: mysqldump –a --all-databases –u root –p > backup-DATE.sql
3. In line 2, replace DATE with today’s date in YYYYMMDD format.
4. Enter your root (database administrators password when

requested).
5. Type: ls –la
6. Verify that the backup*.sql file was created.

In step 1, we changed to your home directory using the cd command by
itself. Then we used the mysqldump utility to backup all databases to a
flat file. Then finally, we verified that the file was created.

This backup file would be copied to a CD/DVD/ or some other form of
backup. It contains all the structures and data found in the database, so
it’s extremely important to keep this data in a safe, secure place.

Required Reading:

 Database dumps

https://help.ubuntu.com/community/Nagios2
http://dev.mysql.com/doc/refman/5.1/en/mysqldump.html

C4L6S30

Screenshot showing MySQL backup process

C4L6S31

The PostgreSQL package is installed with a tool to backup the database. From a
command line console, follow these directions:

1. Type: cd
2. Type: sudo –u postgres pg_dumpall > backup-DATE.sql
3. In line 2 replace DATE with today’s date in YYYYMMDD format.
4. Enter your root (database administrators password when requested).
5. You will need to enter this password for each database that is dumped. Continue

until the command line prompt returns.
6. Type: ls –la
7. Verify that the backup*.sql file was created.

In step 1, we changed to your home directory using the cd command by itself. Then we
used the pg_dumpall utility to backup all databases to a flat file. Then finally, we verified
that the backup file was created.

This backup file would be copied to a CD/DVD or some other form of backup. It contains
all of the structures and data found in the database so it must be kept safe and secure.

C4L6S32

Screenshot showing PostgreSQL backup process

Required Reading:

 PG_Dumpall

https://help.ubuntu.com/community/Nagios2
http://www.postgresql.org/docs/9.0/static/app-pg-dumpall.html

Both MySQL and PostgreSQL are extremely fast and configurable
database systems. They are used by companies such as Google, GoDaddy,
Microsoft (Hotmail), and others.

In this lesson, you began by installing MySQL and PostgreSQL using Yum.
Then we configured MySQL and PostgreSQL to enhance security. We
removed the anonymous database and user from the MySQL installation
and then created the database structure in PostgreSQL.

Then we used the create and grant commands to create a new database in
each of our servers and allowed our testuser to access this new database.
Finally, we used pg_dumpall and mysqldump to backup the databases to a
flat file.

Further configuration of the database server would allow you to open it to
network access, allow access from Java or C programs, and add more
databases and users if required.

C4L633

Required Reading:

 Getting started with

MySQL

https://help.ubuntu.com/community/Nagios2
http://dev.mysql.com/tech-resources/articles/mysql_intro.html
http://dev.mysql.com/tech-resources/articles/mysql_intro.html

