
This material is based on work supported by the
National Science Foundation under Grant No. 0802551

Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the author (s) and do not necessarily reflect the views of the National Science Foundation C4L7S1

http://www.cfengine.org/

U the

System administrators are constantly challenged when
managing large enterprise computer systems using Linux-based
operating systems. These challenges may lead to inefficient
operations and additional financial burdens. Administrators are
required to know a variety of command line differentiations,
dependency variations, support options and a host of other
challenges.

CFengine was developed to help administrators manage large
enterprise systems without the heavy reliance on shell-scripting.
CFengine offers a free, reliable, platform independent option for
remote enterprise management.

This lesson will introduce you to the CFengine administrative
tool and will provide a basic overview of its use and
configuration. Lab activities, assignments, and forum discussions
have been designed to introduce you to the CFengine
application and increase your familiarity with this reliable tool.

C4L7S2

U the

You should know what will be expected of you when
you complete this lesson. These expectations are
presented as objectives. Objectives are short
statements of expectations that tell you what you
must be able to do, perform, learn, or adjust after
reviewing the lesson.

Lesson Objective:

Given five computers that need to be configured,
students will evaluate the shortcomings of shell
scripting that gave rise to configuration management
tools such as CFengine and will illustrate the use of
one configuration tool for maintenance as per industry
standards.

C4L7S3

In this lesson, you will explore:

 Introductory Notes
 CFengine Overview

o What is CFengine?
o Network Admin Tools
o Linux-based Config Tools
o Benefits and Use of CFengine

 Installation & Configuration
o System Management
o Installation & Prerequisites
o Authentication & Syntax
o Log Files

C4L7S4

This lesson is written to provide basic information about
CFengine. The links and videos will provide essential and
detailed information that you will need to complete labs and
activities. Be sure to review the videos and links, even if they
require some patience or might be longer than usual.

Review the links on this page before starting this lesson to
increase your familiarity with available resources on CFengine.

C4L7S5

Helpful Links: CFengine
• Intro to CFengine
• White papers
• Guide to CFengine
• Getting started
• Crash Course
• CFengine examples
• Complete configuration

Recommended Links: CFengine
 Lecture on CFengine (long, but helpful)
 Reference manual (Helpful for lab activities)
 CFengine Solutions (Helpful for lab activities)

https://help.ubuntu.com/community/Nagios2
http://www.cfengine.com/pages/examples
http://www.cfengine.com/pages/examples
http://www.cfengine.com/pages/whitepapers
http://www.cfengine.org/manuals/cf3-tutorial.html
http://www.cfengine.org/manuals/cf3-tutorial.html
http://www.cfengine.org/manuals/cf3-reference.html
http://www.cfengine.org/manuals/cf3-reference.html
http://www.cfengine.org/manuals/cf3-reference.html
http://www.cfengine.org/manuals/cf3-reference.html
http://www.cfengine.org/manuals/cf3-reference.html
http://www.cfengine.org/manuals/cf3-reference.html
https://help.ubuntu.com/community/Nagios2
http://vimeo.com/18219794
http://vimeo.com/18219794
http://vimeo.com/18219794
http://www.cfengine.org/manuals/cf3-Reference.pdf
http://www.cfengine.org/manuals/cf3-solutions.html
http://www.cfengine.org/manuals/cf3-solutions.html
http://www.cfengine.org/manuals/cf3-solutions.html

CFengine is a suite of programs for integrated autonomic management of
either individual or networked computers. It has existed as a software
suite since 1993 and is published under the GNU Public License (GPL v3)
and a Commercial Open Source License (COSL).

CFengine was designed to be an easy to use, automated remote
configuration tool. It can be used to generate reports, monitor system
changes in remote computers, add and remove users and more. Basically,
CFengine can allow one administrator the ability to remotely manage
thousands of computer configurations all over the world.

CFengine’s main attractive feature is it’s price. It is free to the general
public. With over 17 years in the IT age, CFengine is proudly used by
hundreds of corporations all of the world as well as numerous Fortune
500 companies.

C4L7S6

Demo Videos: CFengine
• Installation
• Webserver
• DNS Resolver
• Change detection
• Process Kill Restart

https://help.ubuntu.com/community/Nagios2
http://cfengine.com/pages/demos?view=Installation
http://cfengine.com/pages/demos?view=webserver
http://cfengine.com/pages/demos?view=Cfengine_DNS_Resolver
http://cfengine.com/pages/demos?view=Change_Detection
http://cfengine.com/pages/demos?view=Process_Kill_Restart

There are two different versions of CFengine currently in
use. CFengine3 is the choice of most administrators
because it is based on promise theory and is much easier to
use than the previous version—CFengine 2.

CFengine2 is still used today because it works well and is
trusted by those who have used it for some time.

There is a conversion utility for those who wish to convert
from CFengine2 to CFengine3.

C4L7S7

Select PLAY below to review
the conversion process from
CFengine 2 to CFengine 3.

 View Video
VideoLesson7Cfengine2to3(

C4L7S7).mp4

System administrators are normally required to do repetitive tedious
tasks that consume significant time and resources. Examples of these
redundant tasks include:

 configuring hosts
 creating users
 managing applications, daemons, and services
 monitoring systems for changes
 checking security reports
 monitoring hardware changes

Tools like CFengine allow one administrator the capability to monitor,
change, and configure systems (to which he/she has access)
throughout the world.

Effective use of CFengine has the potential to reduce the number of
additional employees required for a task and decrease the
bureaucracy involved with managing systems in a large corporate
configuration.

C4L7S8

• Puppet (http://puppet.reductivelabs.com/):
A configuration management tool written in Ruby with a client-server
model that uses a declarative language to configure clients.

• LCFG (http://www.lcfg.org/):
A client-server configuration management tool that uses XML to define
configuration.

• Bcfg2 (http://trac.mcs.anl.gov/projects/bcfg2):
A client-server configuration management tool written in Python. It uses
specifications and the client responses to configure target hosts.

• Chef (http://www.opscode.com/chef/)
Chef is an open source system tool that provides integrated
configuration management to an entire network or infrastructure. To
use Chef, you write the code that defines the various parts of your
network or infrastructure and then use Chef to apply those settings to
your servers.

C4L7S9

Suggested Reading
• Puppet
• LCFG
• Bcfg2
• Chef

In addition to CFengine, administrators use a variety of management tools
including:

http://puppet.reductivelabs.com/
http://www.lcfg.org/
http://trac.mcs.anl.gov/projects/bcfg2
http://www.opscode.com/chef/
https://help.ubuntu.com/community/Nagios2
http://puppet.reductivelabs.com/
http://www.lcfg.org/
http://trac.mcs.anl.gov/projects/bcfg2
http://www.opscode.com/chef/)

The first and most attractive feature of CFengine is the price. “Free” is
an attractive offer. Even though the community edition is free, it
offers numerous services and abilities for system administrators to
remotely monitor and configure system components. No longer is one
administrator needed at each remote location for general
administration.

CFengine allows a centralized administrator to gain access to remote
systems and make changes as required. By decreasing the “human
factor” in computer science, CFengine increases uptime and system
efficiency and reliability.

The other major advantage of CFengine is that it has been in
development for 17 years. It is recognized as one of the front runners
of remote system administration tools by major corporations and
governments all over the world. The product not only saves
corporations money because of its price, but it is also recognized as
being SOX compliant. Companies that use CFengine get breaks on
insurance and other administrative overhead relating to computer
science.

C4L7S10

Required Reading
• Sox Compliant
• Sarbanes-Oxley Act

http://www.sox-compliance.net/
http://www.sox-compliance.net/
https://help.ubuntu.com/community/Nagios2
http://www.sox-compliance.net/
http://en.wikipedia.org/wiki/Sarbanes%E2%80%93Oxley_Act
http://en.wikipedia.org/wiki/Sarbanes%E2%80%93Oxley_Act
http://en.wikipedia.org/wiki/Sarbanes%E2%80%93Oxley_Act

 Detect file, content, and process change
 Control file integrity
 Report various changes
 Automatic compliance to defined policy
 Increased chance for SLA compliance
 Always have latest security patches installed
 Always have the right version of the software

running
 Start, stop, restart processes

C4L7S11

Illustration from: https://CFengine.com/inside/cfv3

https://cfengine.com/inside/cfv3
https://cfengine.com/inside/cfv3

C4L7S12

Companies all over the world use CFengine on either one or up to tens of thousands of
computers. Some of these companies include fortune 500 companies and the following:

*Logos are trademarked and owned by
their respective corporations.

 Bundle - a bundle refers to a collection of promises

 Promise – the expression or documentation of an intention to behave or act in a certain way

 cf-agent - active agent (responsible for maintaining promises about the state of your

system). In CFengine 2 the agent was called cfagent.

 cf-execd - scheduler { responsible for running cf-agent on a regular (and user-configurable)

basis (in CFengine 2 the scheduler was called cfexecd). EXECUTOR cf-execd keeps the

promises made in bundles.

 cf-know* - knowledge modelling agent { responsible for building and analyzing a semantic

knowledge network. cf-know keeps the promises made in bundles.

 cf-monitord - passive monitoring agent (responsible for collecting information about the

status of your system, which can be reported upon or used to enforce promises or influence

when promises are enforced). In CFengine 2, the passive monitoring agent was known as

cfenvd.

 cf-promises - Promise validator (used to verify that the promises used by the other

components of CFengine are syntactically valid. cf-promises do not execute promises;

instead, the syntax checks all promises.

 cf-runagent - Remote run agent (used to execute cf-agent on a remote machine. cf-runagent

does not keep promises; it is used to ask another machine to do so). In CFengine 2, the

remote run agent was called cfrun.

C4L7S13

 cf-serverd - Server used to distribute policy or data files to clients requesting them and used

to respond to requests from cf-runagent. In CFengine 2, the remote run agent was called

cfservd.

 cf-report - Self-knowledge extractor takes data stored in CFengine's embedded databases

and converts them to human readable form. Cf-report keeps the promises made in bundles.

 cf-key - Key generation tool that runs once on every host to create public/private key pairs

for secure communication. In CFengine 2, the key generation tool was called cfkey. cf-key

does not keep promises.

 Libraries - A library generally refers to collection of standardized CFengine code that can be

reused in different scenarios and environments such as bundles of promises, or reusable

body-parts.

 Policy - a set of intentions about the system, coded as a list of promises. A policy is not a

standard, but the result of specific organizational management decisions.

 SOX Compliance (Sarbanes-Oxley Act compliance) - An audited accolade for financial data

security required by all companies on the New York stock exchange.

 Template - an incomplete piece of CFengine code with blanks to fill-in. It is often a policy

fragment that can be re-used in different scenarios. This is often used interchangeably with

the term library.

 WORKDIR - The private work space CFengine uses to write reports and logs.

C4L7S14

http://www.sox-compliance.net/
http://www.sox-compliance.net/
http://www.sox-compliance.net/
http://www.sox-compliance.net/

The term “promise” is another interesting and unique concept to
CFengine. In today’s world, we spend a lot of time adjusting to
changes, especially in the IT world. Instead of managing changes
with CFengine, the philosophy is to “promise” something will be
done and will be done correctly.

The promise concept is similar to promising your mother or spouse
you will take out the trash. In most cases, it can be assumed the
job will be completed in a proper manner and if anything goes
wrong, there is a plan to “clean up the mess” or return to the
previous state (where you were prior to the promise being
implemented).

The CFengine software manages every intended system outcome
as `promises' to be kept. A CFengine promise corresponds roughly
to a rule in other software products, but importantly, promises are
always tasks that can be kept and repaired continuously, on a real
time basis, not just once at install-time.

C4L7S15

Suggested Review
• CFengine Documentation

https://help.ubuntu.com/community/Nagios2
http://www.cfengine.org/pages/manual_guides
http://www.cfengine.org/pages/manual_guides
http://www.cfengine.org/pages/manual_guides

 There are four commonly cited phases in managing systems, summarized as follows:

 Build
 Deploy
 Manage
 Audit

These separate phases originate with a model of system management based on transactional changes.
CFengine's conception of management is somewhat different, as transaction processing is not a good
model for system management, but we can use this template to see how CFengine works differently.

Build - A system is based on a number of decisions and resources that need to be `built' before they
can be implemented. Building the trusted foundations of a system is the key to guiding its
development. You don't need to decide every detail, just enough to build trust and predictability into
your system.

In CFengine, what you build is a template of proposed promises for the machines in an organization
such that, if the machines all make and keep these promises, the system will function seamlessly as
planned. This is how it works in a human organization, and this is how it works for computers too.

Deploy, manage, and audit will be discussed on the next page.

C4L7S16

Content taken from:
http://www.cfengine.org/manuals/cf3-tutorial.html

http://www.cfengine.org/manuals/cf3-tutorial.html
http://www.cfengine.org/manuals/cf3-tutorial.html
http://www.cfengine.org/manuals/cf3-tutorial.html
http://www.cfengine.org/manuals/cf3-tutorial.html

 Deploy - Deploying really means implementing the policy that was already decided. In transaction
systems, one tries to push out changes one by one, hence ‘deploying’ the decision. In CFengine, you
simply publish your policy (in CFengine parlance these are ‘promise proposals’) and the machines see
the new proposals and can adjust accordingly. Each machine runs an agent that is capable of
implementing policies and maintaining them over time without further assistance.

Manage - Once a decision is made, unplanned events will occur. Such incidents traditionally set off
alarms and humans rush to make new transactions to repair them. In CFengine, the autonomous agent
manages the system, and you only have to deal with rare events that cannot be dealt with
automatically.

Audit - In traditional configuration systems, the outcome is far from clear after a one-shot transaction,
so administrators usually audit the system to determine what actually happened. In CFengine, changes
are not just initiated once but are also locally audited and maintained. Decision outcomes are assured
by design in CFengine and maintained automatically, so the main worry is managing conflicting
intentions. Users can sit back and examine regular reports of compliance generated by the agents,
without having to arrange for new ‘roll out’ transactions

C4L7S17

Content taken from:
http://www.cfengine.org/manuals/cf3-tutorial.html

http://www.cfengine.org/manuals/cf3-tutorial.html
http://www.cfengine.org/manuals/cf3-tutorial.html
http://www.cfengine.org/manuals/cf3-tutorial.html
http://www.cfengine.org/manuals/cf3-tutorial.html

C4L7S18

CFengine’s system
management cycle is built
around:

 Build
 Deploy
 Manage
 Audit

These four functions are
centered around the
various policies in place in
an organization.

Image taken from www.cfengine.org

https://help.ubuntu.com/community/Nagios2

In order to install CFengine, you should first ensure that the following
packages are installed:

 OpenSSL Open source Secure Sockets Layer for encryption.
 BerkeleyDB (version 3.2 or later) Light-weight flat-file database

system.

In addition...It is recommended to make the Perl Compatible Regular
Expression (PCRE) library available as this is a significant improvement
over the more standard POSIX libraries.

In order to run CFengine on Windows machines, you need to install the
basic Cygwin DLL from: http://www.cygwin.com

Additional functionality becomes available if other libraries are
present, e.g. OpenLDAP, client libraries for MySQL and PostgreSQL,
etc. It is possible to run CFengine without these, but related
functionality will be missing. Students should make sure that all of
these items are installed for the various lab activities included with this
lesson plan.

C4L7S19

Recommended Links:

 OpenSSL
 BerkeleyDB
 Cygwin

http://www.openssl.org/
http://www.oracle.com/technetwork/database/berkeleydb/overview/index.html
http://www.cygwin.com/
http://www.cygwin.com/
https://help.ubuntu.com/community/Nagios2
http://www.openssl.org/
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html
http://www.cygwin.com/

Most popular Linux based systems have package support available that
includes a package manager for both CFengine2 and CFengine 3 at this
time. If your particular distribution does not have package management
support, you can enter the following at the command line:

tar zxf CFengine-x.x.x.tar.gz
cd CFengine-x.x.x
./configure
make
make install

These commands will install binaries in /usr/local/sbin.
(Since this location is not necessarily a local file system on all hosts, users
are encouraged to keep local copies of the binaries on each host, inside the
CFengine trusted work directory.)

From the root command line in Debian based systems, you can also use
the following command:

apt-get install cfengine3

C4L7S20

Select PLAY below to
review installing
CFengine.

 View Video
VideoLesson7InstallCfe
ngine3(C4L7S20).mp4

CFengine agents authenticate with a server via key exchange.

The cf-key binary will create a public and private key pair. This
is done for every server and client. For two hosts to
authenticate, each must have a copy of the other's public key
file. This exchange is normally done manually, but CFengine
may be configured to do this one time only.

Please refer to the reference manual for more information.

C4L7S21

C4L7S22

Directories Descriptions

/var/CFengine/bin CFengine binaries

/var/CFengine/inputs Main configuration files

/var/CFengine/ppkeys Storage for authentication keys

/var/cf-masterfiles The master files, on the server, that agents will request from the
server

/var/cf-failsafe A backup of important CFengine files to allow for automatic recovery

CFengine files are normally located in /var/CFengine. CFengine will create some directories automatically
in this location. The two important ones that must be created by hand are /var/CFengine/bin and
/var/CFengine/inputs. The bin directory contains the binary components listed earlier. This location
allows CFengine to be more self-contained and fault tolerant. For example, the traditional location of
/usr/local/bin is not always a local file system and therefore less reliable.

The inputs directory contains all of the configuration files that CFengine will use to maintain itself and
the client hosts. The majority of work with CFengine will involve files located here. The mandatory files
are failsafe.cf, update.cf and promises.cf.

C4L7S23

Files Descriptions

promises.cf This is the main configuration file. The agent will automatically start
with this file.

update.cf This is a simplified file whose purpose is to ensure the agent is
configured properly so that it can do its job.

failsafe.cf This file is run by the agent if other files are missing or contain errors.
This gives the agent the ability to recover from failure.

cf-server.cf This file configures the CFengine server. It can be named anything but
choosing this name is logical.

cf-execd.cf This file will configure the CFengine executor. Like cfserver.cf, this file
could be named something else.

cfbackup.cf This makes a local backup of CFengine to ensure the agent can
recover from serious data loss.

crontabs.cf This manages host crontables.

library.cf This contains a collection of reusable code similar to a subroutine
library.

C4L7S24

The syntax of CFengine files is relatively simple and somewhat Perl-like. However,
CFengine tends to be more sensitive to white space:

 Sections are contained within brackets
 Commas separate parts of the same action
 Actions are ended with a semicolon
 Body part lines end with semicolons
 Variables are identified by $ and usually contained in brackets to separate them

from surrounding text.
 Most user defined information is contained within double quotations
 Comments begin with # or can be included in the promise so that CFengine will

print them during a run (comment => "My comment").

The CFengine 3 language has a few simple rules:

 CFengine built-in words, and identifiers of your choosing (the names of variables, bundles, body

templates and classes) may only contain the usual alphanumeric and underscore characters (a-z, A-Z,
0-9, and underscore (_).

 All other `literal' data must be quoted.
 Declarations of promise bundles in the form:

C4L7S25

Bundle agent-type identifier
{
...

}

 Declarations of promise body-parts in the form:

body constraint_type template_identifier
{
...

}

matching and expanding on a reference inside a promise of the form ‘constraint_type =>
template_identifier’.

Continued . . .

The CFengine 3 language has a few simple rules:

 CFengine uses many `constraint expressions' as part of the

body of a promise. These take the form: left-hand-side
(cfengine word) ‘=>’ right-hand-side (user defined data). This
can take several forms:

C4L7S26

cfengine_word => user_defined_template(parameters)
 user_defined_template
 builtin_function()
 "quoted literal scalar"

 { list }

In each of these cases, the right hand side is a user choice.

Continued from previous . . .

Select PLAY below to
review CFengine’s code
sample.

 View Video
VideoLesson7CodeSample

(C4L7S26).mp4

body common control
{
 bundlesequence => { "test" };
}
bundle agent test
{
 reports:

 Yr2011::

 "Hello world";

}

C4L7S27

Reference
• CFengine Manual

Most programmers use the famous Hello World script to “program” their
first language example. CFengine also has a hello world example:

https://help.ubuntu.com/community/Nagios2
http://www.cfengine.org/manuals/cf3-reference.html
http://www.cfengine.org/manuals/cf3-reference.html
http://www.cfengine.org/manuals/cf3-reference.html

If you try to process the “hello world” program using the cf-
promises command, you will see output similar to this:

atlas$ ~/portable/CFengine3/trunk/src/cf-promises -r -f
./unit_null_config.cf

Summarizing promises as text to ./unit_null_config.cf.txt
Summarizing promises as html to ./unit_null_config.cf.html

The `-r' option produces a report. Examine the files produced:

cat ./unit_null_config.cf.txt
firefox ./unit_null_config.cf.html

You also will see a summary of how CFengine interprets the files,
either in HTML or text. By default, the CFengine components
also dump a debugging file, e.g. `promise_output_agent.html',
`promise_output_agent.txt' with an expanded view.

C4L7S28

Select PLAY below to
review CFengine’s hello
world program.

 View Video
VideoLesson7HelloWorld(

C4L7S28).mp4

C4L7S29

promise_summary.log
A time-stamped log of the percentage fraction of
promises kept after each run.

cf3.HOSTNAME.runlog
A time-stamped log of when each lock was released.
This shows the last time each individual promise was
verified.

cf_value.log
A time stamped log of the business value estimated
from the execution of the automation system.

The lesson on CFengine was created to introduce Linux Administrators to a powerful remote system
administrative tool. CFengine is a widely accepted and tested tool used by hundreds of large corporations
around the world. CFengine has been developed and used for over 17 years and has a proven track record
of being easily implemented and configured in the real world.

In this lesson, you were introduced to the basic elements involved with maintaining a Linux infrastructure
using the CFengine tool. Specifically, you:

 Reviewed CFengine terminology
 Reviewed the installation processes of CFengine
 Reviewed log files of interest
 Reviewed default file locations
 Researched and explained a script
 Researched and implemented a script to add users
 Researched automated reporting using CFengine

 Students who develop and demonstrate a basic understanding of CFengine and other remote
administrative processes will maintain a competitive advantage in the world of IT and technology.

C4L730

