
This material is based on work supported by the
National Science Foundation under Grant No. 0802551

Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the author (s) and do not necessarily reflect the views of the National Science Foundation C4L8S1

U the

System administrators are constantly challenged when
managing large enterprise systems using Linux-based
operating systems. Administrators need to know a variety of
command line differentiations, dependency variations, and
support options to support the various computers systems in
use. Puppet offers a free, reliable and cross flavor option for
remote enterprise computer management.

This lesson will introduce you to the Puppet Administrative
tool and provide you with a basic overview on how to use
Puppet. Lab activities will provide you with hands-on
experience with the Puppet application and assignments and
discussion activities will increase your learning on this subject.

Understanding Puppet is important because of its ability to
manage enterprise systems. Students hoping to become Linux
Administrators must gain mastery of enterprise management
tools like Puppet to improve efficiency and productivity.

C4L8S2

U the

You should know what will be expected of you when
you complete this lesson. These expectations are
presented as objectives. Objectives are short
statements of expectations that tell you what you
must be able to do, perform, learn, or adjust after
reviewing the lesson.

Lesson Objective:

Given five computers that need to be configured,
students will assess the shortcomings of scripting
that gave rise to configuration management tools
and will illustrate the use of one configuration tool
for maintenance per industry standards

C4L8S3

In this lesson, you will explore:

 Introductory Notes
 Puppet Overview

o What is Puppet?
o Puppet Terminology
o Puppet Performance & Future

 Installation & Configuration
o Ruby Installation
o Facter
o Certification
o Configuration

C4L8S4

The following links are provided for you to review and research additional
content on Puppet. You should review these links before starting this
lesson to increase your familiarity with available resources on Puppet.

Debian is actually the Mother of Ubuntu! Ubuntu was derived from and
modeled after Debian. You may ask, why select Debian instead of Ubuntu
for this lesson? The answer is simple. By using Debian, we can quickly
install the bare necessities to demonstrate the remote configuration tool
called Puppet. Each Debian client installation will be close to 1GB in size,
use around 200 MBs of RAM (out of the 400 MBs set aside for it), and use
a minimum of CPU time on the host machine. This low Debian footprint
will allow us to setup additional Fedora and Debian virtual machines
without overwhelming our system resources. Additionally, we will
introduce you to a network installation in this lesson as a bonus!

After finishing this lesson, you should be able to setup Puppet, several
Debian VMs, and Fedora as well!

C4L8S5

Helpful Links
• Debian Linux
• Download Virtual Box
• Virtual Box Manual
• Debian on VirtualBox

https://help.ubuntu.com/community/Nagios2
http://www.debian.org/
http://www.virtualbox.org/wiki/Downloads
http://dlc.sun.com.edgesuite.net/virtualbox/4.0.4/UserManual.pdf
http://wiki.debian.org/VirtualBox
http://wiki.debian.org/VirtualBox

Puppet is a fairly new tool and is undergoing constant changes. This
lesson has been designed to give a brief introduction to the Puppet
application and students need to review all of the listed resources as part
of the lesson. Complete books have been written on the Puppet project,
and this lesson covers only the basics of the application.

During research and testing for developing this lesson, the author found
several real world “scenarios” where he intends to test Puppet as an
alternative to commercially available products.

One additional note
During lesson development, the author of this lesson was able to verify
that there are immediate openings within the IT Industry for
administrators experienced with Puppet. Even the projects web site has
information on potential job openings!

C4L8S6

Helpful Links
• Debian Linux
• Download Virtual Box
• Virtual Box Manual
• Debian on VirtualBox

https://help.ubuntu.com/community/Nagios2
http://www.debian.org/
http://www.virtualbox.org/wiki/Downloads
http://dlc.sun.com.edgesuite.net/virtualbox/4.0.4/UserManual.pdf
http://wiki.debian.org/VirtualBox
http://wiki.debian.org/VirtualBox

Before continuing this lesson, review the lab assignments and
then download the ISO for a Debian Net Install. The download
should take about an hour depending on system throughput.

The image can be found at the link below:

http://cdimage.debian.org/debian-cd/6.0.0/i386/iso-cd/debian-
6.0.0-i386-netinst.iso

Once the image has been downloaded, create a backup of the
ISO and store it on your computer at a location where it will
not be modified. Having a backup ISO image will save you time
later if you damage your working ISO image.

C4L8S7

Helpful Links
• Puppet documentation
• Puppet FAQ
• About Puppet
• Intro to Puppet
• Use of Puppet
• Puppet Mailing List
• Puppet Recipes
• Puppet Configuration
• Puppet IRC Channel
• Excellent Puppet Videos

http://cdimage.debian.org/debian-cd/6.0.0/i386/iso-cd/debian-6.0.0-i386-netinst.iso
http://cdimage.debian.org/debian-cd/6.0.0/i386/iso-cd/debian-6.0.0-i386-netinst.iso
http://cdimage.debian.org/debian-cd/6.0.0/i386/iso-cd/debian-6.0.0-i386-netinst.iso
http://cdimage.debian.org/debian-cd/6.0.0/i386/iso-cd/debian-6.0.0-i386-netinst.iso
http://cdimage.debian.org/debian-cd/6.0.0/i386/iso-cd/debian-6.0.0-i386-netinst.iso
http://cdimage.debian.org/debian-cd/6.0.0/i386/iso-cd/debian-6.0.0-i386-netinst.iso
http://cdimage.debian.org/debian-cd/6.0.0/i386/iso-cd/debian-6.0.0-i386-netinst.iso
http://cdimage.debian.org/debian-cd/6.0.0/i386/iso-cd/debian-6.0.0-i386-netinst.iso
http://cdimage.debian.org/debian-cd/6.0.0/i386/iso-cd/debian-6.0.0-i386-netinst.iso
http://cdimage.debian.org/debian-cd/6.0.0/i386/iso-cd/debian-6.0.0-i386-netinst.iso
http://cdimage.debian.org/debian-cd/6.0.0/i386/iso-cd/debian-6.0.0-i386-netinst.iso
http://cdimage.debian.org/debian-cd/6.0.0/i386/iso-cd/debian-6.0.0-i386-netinst.iso
https://help.ubuntu.com/community/Nagios2
http://reductivelabs.com/trac/Puppet/wiki/DocumentationStart
http://reductivelabs.com/trac/Puppet/wiki/FrequentlyAskedQuestions
http://reductivelabs.com/trac/Puppet/wiki/AboutPuppet
http://reductivelabs.com/trac/Puppet/wiki/PuppetIntroduction
http://reductivelabs.com/trac/Puppet/wiki/WhosUsingPuppet
http://reductivelabs.com/trac/Puppet/wiki/GettingHelp
http://reductivelabs.com/trac/Puppet/wiki/PuppetRecipes
http://reductivelabs.com/trac/Puppet/wiki/CompleteConfiguration
irc://irc.freenode.net/Puppet
http://www.puppetlabs.com/community/videos/

System administrators do many tedious tasks that are frequently repeated.
Examples of these redundant tasks include:

 Configuring hosts
 Creating users
 Managing applications, daemons, and services

These tasks are often prone to error and waste valuable time due to their
inefficiency and potential for human mistakes.

Experienced administrators will automate these tasks using customized scripts
and applications. While these meet the objectives of a single user or manager
of a small network, transferring these practices to a large enterprise system is
not feasible. Additionally, administrator-created scripts are usually designed
for one version of Linux and require major tweaks to incorporate them into
other Linux flavors.

These edits increase the time and effort required to develop and maintain the
very tools you are hoping to use to reduce administrative efforts. Commercial
tools are available to help system administrators manage large networks, but
they are pricey and lack flexibility, which adds further restrictions.

C4L8S8

Required Reading
• Puppet
• Cfengine
• LCFG
• Bcfg2

https://help.ubuntu.com/community/Nagios2
http://puppet.reductivelabs.com/
http://www.cfengine.or/
http://www.lcfg.org/
http://trac.mcs.anl.gov/projects/bcfg2

Open Source programmers have solved these challenges by
creating several alternative solutions in the typical free natured
philosophy enjoyed by Linux users. These tools are not only free,
but much more flexible in their use when compared to their
commercial “equivalents.”

By using open-source products, you and your company can
participate and support the Linux philosophy because the source
code is at your fingertips, allowing you to develop and
enhance/adjust your own code.

Users devoted to Linux maintain a philosophy of supporting their
peers and Linux community by actively participating in and
testing applications being developed. Puppet is one of those
applications.

C4L8S9

Required Reading
• Puppet
• Cfengine
• LCFG
• Bcfg2

https://help.ubuntu.com/community/Nagios2
http://puppet.reductivelabs.com/
http://www.cfengine.or/
http://www.lcfg.org/
http://trac.mcs.anl.gov/projects/bcfg2

Puppet is an open source Ruby-based system and
configuration management tool that relies on a
client-server deployment model. It is licensed using
the GPLv2 license and is principally developed by
Luke Kanies.

Kanies has been involved in Unix and systems
administration since the mid-nineties, and Puppet
was developed from his experience. Unsatisfied with
existing configuration management tools, Kanies
began working in tool development in 2001, and in
2005, he founded Reductive Labs, an open source
development house focused on automation tools.
Shortly after this, Reductive released their flagship
product, Puppet.

C4L8S10

Required Reading
• Puppet project
• Puppet Wiki
• Puppet made easy

http://www.ruby-lang.org/en/
http://www.ruby-lang.org/en/
http://www.ruby-lang.org/en/
http://www.gnu.org/licenses/gpl-2.0.txt
http://www.puppetlabs.com/company/overview/
http://www.puppetlabs.com/company/overview/
http://www.puppetlabs.com/
http://www.opensource.org/
http://projects.puppetlabs.com/projects/puppet
https://help.ubuntu.com/community/Nagios2
http://projects.puppetlabs.com/projects/Puppet
http://projects.puppetlabs.com/projects/Puppet/wiki/About_Puppet
http://www.linuxuser.co.uk/tutorials/puppet-server-management/

Many systems and configuration management products such as cfengine, are similar in functionality.
So what makes Puppet different? Puppet’s defining characteristic is that it speaks the local language of
your target hosts. This capability allows Puppet to define systems administration and configuration
tasks with generic instructions on the Puppet server. These instructions are often called recipes.

Puppet’s recipe syntax allows you to create a single script that allows you to create a user on all your
target hosts. In turn, this recipe is interpreted and executed on each target host using the correct local
syntax for that host. For instance, if the recipe is executed on a Red Hat Linux server, the user would be
created with the useradd command. If the same recipe is executed on a FreeBSD target, the adduser
command would be executed. Because Puppet recipes are so portable, community members and
contributors share recipes for a variety of activities on the Puppet website, mailing list, and IRC
channel!

The next area Puppet excels in is flexibility. As a result of its open source nature, you always have free
access to Puppet’s source code, meaning if you have a problem and you have the skills to do so, you
can alter or enhance Puppet’s code to suit your environment.

Additionally, community developers and contributors regularly enhance and add to the functionality of
Puppet. A large community of developers and users also contribute to providing documentation and
support for Puppet.

C4L8S11

H:/Polk College/PSC Linux Course Content/Lesson Plan/Course 4 Network Services/Lesson 8 Puppet/cfengine
http://projects.puppetlabs.com/projects/puppet/wiki/Puppet_Patterns

Puppet is also readily extensible. Functions to support custom
packages and configurations unique to your environment can be
quickly and easily added to your Puppet installation. In addition, the
Puppet community regularly adds code and packages you can
modify or incorporate into your environment.

Finally, Puppet makes use of another Ruby-based tool, Facter.

Facter is a system analysis tool that allows you to query and return
information about hosts that you can use in your Puppet
configuration as variables.

The ability to use variables means you can write generic
configuration instructions and use Facter-returned variables to
ensure the right values are configured on the right host. This
precludes the need for external databases, configuration files, or
directories.

C4L8S12

Required Reading
• Facter

“Facter is a lightweight
program that gathers basic
node information about the
hardware and operating
system.

Facter is especially useful for
retrieving things like operating
system names, hardware
characteristics, IP addresses,
MAC addresses, and SSH keys.”

From puppetlabs.com

http://reductivelabs.com/projects/facter/
https://help.ubuntu.com/community/Nagios2
http://reductivelabs.com/projects/facter/
http://www.puppetlabs.com/puppet/related-projects/facter/

With Puppet, central servers, called Puppet masters, are installed and
configured. Client software is then installed on the target hosts, called Puppets
or nodes, that you wish to manage. Configuration is defined on the Puppet
master, compiled, and then pushed out to the Puppet clients when they
connect.

To provide the client-server connectivity, Puppet uses XML-RPC web services
running over HTTPS on TCP port 8140. To provide security, the sessions are
encrypted and authenticated with internally generated self-signed certificates.

Each Puppet client generates a self-signed certificate that is then validated and
authorized on the Puppet master.

Thereafter, each client contacts the server, by default every half hour, to
confirm that its configuration is up to date. If a new configuration is available or
the configuration has changed, it is recompiled and then applied to the client. If
required, a configuration update can also be triggered from the server, forcing
configuration down to the client. If any existing configuration has varied on the
client, it is corrected with the original configuration from the server.

Puppet, however, is more than just a client-server configuration management
tool—it is a three-tier architecture that combines a declarative language,
transactional layer, and resource abstraction layer.

C4L8S13

View complete image

http://www.xmlrpc.com/
http://www.xmlrpc.com/
http://www.xmlrpc.com/
http://www.puppetlabs.com/images/system_diagram.png
http://www.puppetlabs.com/images/system_diagram.png

Puppet is preloaded with a number of resource types by default including types to manage files,
services, packages, cron jobs, and file systems. Within each type, you can specify the file that must be
managed. For instance you can specify a type for the /etc/passwd file and then set the filename as the
title of your resource.

When referring to the resource in other parts of your configuration file, reference the title. Finally, you
can set the owner attribute which tells Puppet to set the ownership of the file to the root user.

C4L8S14

Resource Type Description

cron Manages cron jobs

exec Executes external scripts

file Manages files

filebucket Respository for backing up files

group Manages groups

host Manages host entries

interface Configures interfaces (Redhat & Solaris only)

Table continued from previous . . .

C4L8S15

Resource Type Description

Mailalias Manages mail aliases

Maillist Manages mailing lists

Mount Manages mount entries

Notify Sends a message to the Puppet log file

Package Manages packages

Schedule Defines Puppet scheduling

Service Manages services

Sshkey Manages SSH host keys

Tidy Removes unwanted files

User Manages users

Yumrepo Manages YUM repositories

zones Manages Solaris zones

Required Reading
• Puppet Types

https://help.ubuntu.com/community/Nagios2
http://docs.puppetlabs.com/guides/types/alphabetical_index.html

Puppet users can move beyond single resources types by using
collections. Puppet collections allow you to group together many
resources. For example, an application such as Apache is made up of
a package, a service, and a number of configuration files. Puppet
calls these collections “classes.” Each component of an application
is represented as a resource (or resources) and then collected
together in a class and applied to a node.

The Puppet language also defines the nodes you wish to configure.
After a client is connected to Puppet, a node definition can be
created that defines what resources and collections of resources are
applied to each node.

Node definition allows you to apply appropriate configuration to all
nodes running a particular platform or a particular service. For
example, you can specify all resources required for Red Hat
Enterprise Linux nodes or all configuration required for a database
or web server.

C4L8S16

Required Reading
• Variables
• Arrays
• Conditions

The Puppet language
allows features usually
found in programming
languages including:

Note: Puppet is rapidly being
developed and should be
considered a dynamic
application.

http://www.redhat.com/
http://www.redhat.com/
https://help.ubuntu.com/community/Nagios2
http://cplus.about.com/od/introductiontoprogramming/p/variable.htm
http://answers.yahoo.com/question/index?qid=20070818211751AAZv92f
http://php.about.com/od/learnphp/ss/phpbasics_8.htm
https://help.ubuntu.com/community/Nagios2

There are two keys to performance management—the number of nodes connected and the amount of
configuration defined on each node. As of this writing, there are no known limitations or defined end-
points for the number of clients and servers that can be managed with Puppet.

Testing suggests that fifty to one hundred nodes with a moderate amount of configuration can be
managed on a single CPU Puppetmaster with 2GBs of RAM. It can be assumed that more nodes will
require additional CPU and memory support.

Internally, Puppet uses the WEBbrick web server to interface with clients. The WEBbrick server has some
performance limitations and limits administrators to smaller configurations. For better performance,
administrators may want to use the Mongrel web server since Puppet has been tested with it.

Generally, the WEBbrick web server will start to experience difficulties in performance at about 50
nodes. This is probably a good breaking point to switch to Mongrel.

Recent reports indicate that when running Puppet with load balancing and Mongrel, node volumes of
5000 or more are feasible with extended memory and resource additions.

C4L8S17

Lastly, it is very important to remember that Puppet is still in the midst of development
and change. The Puppet community is growing quickly, and many new ideas,
developments, patches, and recipes appear every day.

But this rapidly changing environment does make it important to keep an eye on the
Puppet mailing lists, IRC channel, and #Puppet on Freenode as new enhancements that
could help you better manage your configurations appear frequently.

C4L8S18

Notes:

IRC information
IRC stands for Internet Relay Chat and is not a secure method of communication. Be careful
using scripts and running executables without understanding their origins or intent.

Distinction between client and node
• Client refers to the Puppet client daemon that connects to the Puppet master and

retrieves the configuration.
• Node refers to the underlying host to which configuration is applied.

Configuration and Testing

C4L8S19

The process of installing Puppet’s master and client
components is quick and easy, but you will need to install
some prerequisites first. The prerequisites are required for
both hosts that run the Puppet master or client. (Remember,
your Puppet master can also be a Puppet node). These
prerequisites include the Ruby interpreter, select Ruby
libraries, and Facter.

Since Puppet is a Ruby-based application, you must first
ensure Ruby is installed, and if not, install Ruby and key Ruby
libraries. Many Linux and other Unix-like platforms come with
a Ruby package, and you can install this package and any
required library packages. If your distribution does not have a
package, you can install Ruby from source.

Please refer to Documentation and Installation Instructions
for your specific version of Linux at the Puppet Project
website.

C4L8S20

Required Reading
• Puppet Management

 View Video
VideoLesson8PuppetInstall

Master(C4L8A2).mp4

http://docs.puppetlabs.com/
http://docs.puppetlabs.com/
https://help.ubuntu.com/community/Nagios2
http://www.sparksupport.com/blog/puppet-configuration-management-tool

Many Linux distributions and Unix operating systems have Ruby packages
available, including Red Hat Enterprise Linux, Fedora, Debian, Ubuntu,
SuSE, and Mandriva.

Some distributions bundle all the required Ruby binaries and libraries in a
single package. Other distributions separate the core development
environment and the libraries into individual packages.

So, if you are installing Ruby and its libraries on a Red Hat Fedora host,
you need to use its package management system to install Ruby and
Ruby-libs packages. See command line example below for installation of
Ruby and Ruby-libs using Yum.

yum install ruby ruby-libs

Fortunately, Debian auto-downloads and configures Ruby!

C4L8S21

http://www.ruby-lang.org/en/downloads/

C4L8S22

OS Ruby Library Additional Pkg

Debian Ruby libruby libopenssl-ruby , libxmlrpc-ruby

FreeBSD Ruby

Gentoo Ruby

Madriva Ruby

NetBSD Ruby

OpenBSD Ruby

Redhat Ruby ruby-libs

Suse Ruby Ruby

Ubuntu Ruby libruby libopenssl-ruby , libxmlrpc-ruby

Installing the Ruby package and libraries may not always install all required libraries.

If the following base libraries are not installed as part of your base Ruby installation, you may need
to selectively install the missing libraries. These may include the following files depending your
distro and version.

C4L8S23

The good news is that most developers of common distros currently include full Puppet support
and have added the packages and their dependencies to the package managers!

 • base64
 • cgi
 • digest/md5
 • etc
 • fileutils
 • ipaddr
 • openssl
 • strscan
 • syslog
 • uri
 • WEBbrick
 • WEBbrick/https
 • xmlrpc

Puppet relies on the Facter tool to provide information about hosts. Facter
is also developed by Puppet’s developers, Luke Kanies and Reductive Labs,
and is written in Ruby.

Facter is a cross-platform Ruby library for returning “facts” about the
operating system of a host including IP addresses, and operating system
versions. Facter can be installed from source. Some platforms have a
Facter package available.

Facter is available as a source package from Reductive Labs. To test if
Facter is installed, enter the following at a command line: # facter --version

Facter names may differ across distros. For instance:

Platform Facter Package Name
Debian facter
Fedora facter
FreeBSD facter
Gentoo facter
OpenBSD ruby-facter
Ubuntu facter

C4L8S24

Required Reading
• Facter for Puppet

http://www.reductivelabs.com/downloads/facter/
https://help.ubuntu.com/community/Nagios2
http://www.puppetlabs.com/Puppet/related-projects/facter/

There is also a Facter package available for OS X. The package
combines both Facter and Puppet and can be downloaded from:

http://reductivelabs.com/downloads/packages/OSX/

 Reductive reports that the build appears to be stable, but the OS
X version has not been extensively tested.

The Reductive Labs website also reports a working Windows
version available through the use of an API call (REST API).

The Windows version of Facter was not tested by the author of
this lesson but students wishing to test the API version can find
more information at the facter site.

C4L8S25

Facter
• Windows Support

http://reductivelabs.com/downloads/packages/OSX/
http://reductivelabs.com/downloads/packages/OSX/
http://docs.puppetlabs.com/guides/rest_api.html
http://www.puppetlabs.com/puppet/related-projects/facter/
https://help.ubuntu.com/community/Nagios2
https://projects.puppetlabs.com/issues/5666

C4L8S26

Instructions Commands

architecture The architecture of the node, x86_64, for example

domain The domain name of the node

facterversion The version of Facter running on the node

fqdn The fully qualified domain name of the node

hardwaremodel The model of the hardware, for example, x86_64

hostname The hostname of the node

id The user running Facter

ipaddress The IP address

kernel The kernel type on the node

kernelrelease The kernel release of the kernel running on node

lsbdistcodename The LSB codename of the distribution running on the node

lsbdistdescription The LSB description of the distribution running on the node

Continued on next . . .

C4L8S27

Fact Description

Lsbdistid The LSB release ID of the distribution running on the
node

Lsbdistrelease The LSB release number of the distribution running on
node

Macaddress The MAC address of the node

Memoryfree The available memory

Memorysize The total memory size

Operatingsystem The node’s operating system, for example, Fedora

Operatingsystemrele
ase

The release of the node’s operating system

Continued on next . . .

C4L8S28

Instructions Commands

Processor The make of each processor, includes an entry for each processor,
incremented from 0

Processorcount The total processor count

Puppetversion The version of Puppet on the node

Rubyversion The version of Ruby on the node

sshdsakey The node’s public DSA key

Sshrsakey The node’s public RSA key

swapfree The available swap space

swapsize The total swap size

Continued from previous . . .

You may want to optionally install the RDoc
package. RDoc is the Ruby Standard
Documentation System that allows Ruby apps to
return help text and documentation when
prompted.

RDoc may come with Ruby versions later than 1.8.2,
but several platforms still have a separate package
for RDoc. If you do not have RDoc installed, your
Facter or Puppet binaries will not return help text
when prompted, for example, if you enter:

facter --help

You will receive the response:

No help available unless you have RDoc::usage
installed.

C4L8S29

http://rdoc.sourceforge.net/

Puppet currently recognizes and supports the following versions
of Linux:

C4L8S30

Required Reading
• Puppet Platform guide

Linux
CentOS
Debian 3.1 and later
Fedora Core 2-6
Fedora 7 and later
Gentoo Linux
Mandriva Corporate Server 4
RHEL 3 and later
Oracle Linux
SuSE Linux 8 and later
Ubuntu 7.04 and later
ArchLinux

BSD
FreeBSD 4.7 and later
OpenBSD 4.1 and later

Other Unix
Macintosh OS X
Sun Solaris 2.6
Sun Solaris 7 and later
AIX
HP-UX

Windows
Windows (Supported in
Puppet 2.6 & later)

https://help.ubuntu.com/community/Nagios2
http://docs.puppetlabs.com/guides/platforms.html

Puppet is available as a package for a number of platforms, but
not all of them yet. During the development of this lesson,
packages were available for Debian, FreeBSD and OpenBSD,
Gentoo, Red Hat Fedora, and Ubuntu as part of their package
management systems.

Some packages contain both the server and the client, while
others have separate packages for each.

C4L8S31

Required Reading
• Puppet Platform guide

 Platform Puppet Server Puppet Client

Debian Puppetmaster Puppet

Fedora Puppet-server Puppet

FreeBSD Puppet

Gentoo Puppet

OpenBSD Ruby-Puppet

Ubuntu Puppet

https://help.ubuntu.com/community/Nagios2
http://docs.puppetlabs.com/guides/platforms.html

Puppet is now offered as a package
utility from several Synaptic Package
Managers. Simply access the Synaptic
Package Management GUI and search
for “Puppet.”

Some flavors will offer at least two
selections. The first will be the Puppet
Client and the second will be Puppet
Master.

Make sure you select the right option
(normally client). Choose your desired
package and select Apply.

C4L8S32

To confirm Puppet is installed, enter
the following command:

Puppet –version

You will get a response similar to:
0.24.5

C4L8S33

C4L8S34

The default folder setup for Puppet is as follows:

Files Description

/etc/Puppet - Basic Puppet configuration information

/etc/Puppet/manifests Node config mappings

/etc/Puppet/manifests/filetypes/* Various filetype definitions

/etc/Puppet/manifests/nodes/* Server lists and the classes they use

/etc/Puppet/manifests/server-groups Maps services with a server type

/etc/Puppet/manifests/service-types Contains each service and requirements for that service

/etc/Puppet/manifests/site.pp Contains the 'root' config file which includes other config
files

/var/lib/Puppet/ Puppet files

/var/lib/Puppet/config Config files for the actual nodes (e.g. httpd.conf)

/etc/lib/Puppet/bucket Backup of overwritten config files

Note: Some of these folders will be created as part of your configuration and setup and may not be available
initially.

C4L8S35

Now let’s look at the Puppet master daemon by running it and
adding our first node. One of the strengths of the Puppet
infrastructure is that most of the functionality will run with a
default configuration without any changes. The only two
resources you need to run Puppet are a user and group and a
basic configuration to apply to your first node.

We will create a user and group, and then start the Puppet
master daemon for the first time using the basic configuration.

If you installed Puppet from a package, a user and a group
(usually called Puppet), was already created for you. You can
check for this user by using the “id” command as shown:

id Puppet

The response below indicates that a user and a group exist:

uid=108(Puppet) gid=116(Puppet) groups=116(Puppet)

C4L8S36

If you do not see a user and a group, you will need to create them. You should name the
user and group with the default name Puppet. On a Red Hat host, use the following
commands:

groupadd Puppet
useradd –M –g Puppet Puppet

In Debian/Ubuntu:

Sudo addgroup accounts
Sudo adduser Puppet

 View Video
VideoLesson8PuppetConfig

(C4L8A3).mp4

C4L8S37

Now that you have a user and group to run the Puppet master server, you can start it using the
Puppetmasterd binary as shown below.

Puppetmasterd

Note: The Manifest /etc/Puppet/manifests/site.pp must exist or you will get an error message.

You may see that trying to start Puppetmasterd has resulted in an error message stating that the
manifest (/etc/Puppet/manifests/site.pp) must exist. A manifest is Puppet’s term for a text document
that defines a particular configuration or configurations. These manifests are then compiled and
applied to a Puppet node to set the desired configuration on the node.

Puppet requires a central manifest file, called the site manifest, before the master daemon can be
started. By default, the site manifest file is called site.pp and is located in the /etc/Puppet/manifests
directory. You will learn how to reconfigure this location later in this lesson. This central manifest
will ultimately contain all the configuration information required to configure all your nodes, either
directly in the file or by including and importing other files.

Note: If you added the puppetmaster from a Package Manager, puppetmaster was probably already
started as part of the installation process.

C4L8S38

Puppet will not start without a central manifest. Consequently, you just want to create a
simple site.pp file to get Puppet started.

First, create the directory:

mkdir –p /etc/Puppet/manifests

Then create the file:

file { "/etc/passwd":
owner => "root",
group => "bin",
mode => 644,
}

This site.pp file is very simple: it sets the user and group ownership of the /etc/passwd file as
well as its permissions. Indeed, your first site.pp file could do anything; you just need a file
with correct syntax to start the Puppet daemon.

C4L8S39

To start the master daemon type:

Puppetmasterd --verbose --no-daemonize

We started Puppetmasterd with the --verbose and --no-
daemonize options.

The --verbose option turns on verbose logging, and the --no-
daemonize option forces the master daemon to run in the
foreground. This mode is ideal for troubleshooting your
master daemon.

Note: The --no-daemonize option was introduced in version
0.24 of Puppet. Prior to this, the –verbose option by it caused
the Puppetmasterd not to daemonize.

 In most cases, puppetmaster daemon starts as part of the
installation process.

 info: Starting server for Puppet
version 0.23.0

info: Parsed manifest in 0.01
seconds

info: Listening on port 8140

notice: Starting Puppet server
version 0.23.0

Display text as seen when
Puppetmaster Daemon starts

C4L8S40

Once started, Puppet expects to find each node defined in a manifest, either directly in the
site.pp file or in another file imported into the site manifest. The node definitions tell Puppet
about each host to be configured and exactly what configuration applies to each. For example,
you might have configuration specific to Debian hosts, or to web servers, or hosts in a specific
location. When you are using node definitions, only the configuration defined to a particular
node will be applied to that node.

Puppet detects if you have nodes defined or not. If you do not have defined nodes, Puppet
turns off node designation. With node designation turned off, all configuration resources
defined will be applied to all nodes that connect to the master. Since we do not have nodes nor
any substantive configuration in our example, it is best to turn off nodes until we are ready to
define our first node.

In our current example, the master daemon has started and is listening on TCP port 8140. You
will need to open this port in any firewall you are running on the local host. If the port is open
and the master daemon has started without error messages, you are now ready to connect
your first node.

C4L8S41

Unlike the Puppet master daemon, the Puppet client daemon runs as the root user, allowing it
to perform the required configuration actions on your Puppet node. The first time you start a
node, it will generate a local self-signed certificate, connect to a master server (which, in
addition to distributing configuration to nodes, also acts as a Certificate Authority) you specify,
and request that the certificate be signed.

Note: Puppet relies on SSL to communicate between client and server. You need to ensure that
the date/time on your server and client is correct and appropriately synchronized to ensure SSL
functions correctly.

Once the certificate is signed, the node will request whatever configuration is specified for that
node. The master server will then compile and deliver the configuration. The configuration is
then implemented on the node. The Puppet client will then periodically check the master to see
whether the configuration defined there is unchanged. By default, this periodic check occurs
every 30 minutes. If it has changed, the client will request a recompilation of the configuration,
and the new configuration will be implemented on the node.

Note: If you are running the Puppet client on the same host as the server, your certificate will be
automatically signed.

C4L8S42

To start the Puppet client:

Puppetd --server Puppetmaster.localhost.net --verbose --
waitforcert 60

notice: Did not receive certificate

We started the Puppet client daemon with three options:
--server, --verbose, and --waitforcert.

The --server option tells the client the name of the server to which it
must connect. You should specify the server in the form of a fully
qualified domain name. The –verbose option enables verbose output
for the client and stops it going into the background and
daemonizing.

The last option, --waitforcert, tells the client to check every 60
seconds to see whether a signed certificate is returned from the
server. This option is generally only used when you are connecting a
new node and tells the client daemon to keep checking the server
for a signed certificate.

If you should happen to see the
following readout:

notice: Did not receive
certificate

Check your master daemon and
you should see a corresponding
log message:

notice: Host node1.localnet.net
has a waiting certificate
request

This message indicates that the
client’s request to have a
certificate signed has been
received, and now you need to
act on it.

Important:

C4L8S43

So how does the node acquire a signed certificate, receive authentication, and deliver its
configuration?

Certificate signing is done on the master server by the Puppetca tool. The Puppetca tool
controls the Puppet Certificate Authority and allows certificate requests to be signed or
revoked.

Note: You can configure Puppet to automatically sign all incoming certificate requests
(known as autosign), either from every node or using coarse-grained authentication to
selectively sign node requests based on hostname or domain. Using both forms of autosign
poses a serious security risk as they bypass Puppet's security controls.

Using autosign is not recommended. But if you do, you can see more details about autosign
and Puppet’s certificate management at:

http://www.reductivelabs.com/trac/Puppet/wiki/CertificatesAndSecurity.

http://www.reductivelabs.com/trac/puppet/wiki/CertificatesAndSecurity

C4L8S44

Use the command below to list all the waiting certificate signing requests:

Puppetca --list

If you followed this example precisely, you will receive this response: node1.localnet.net
The --list option listed our node’s signing request. Now, if you want to sign it, you can use the Puppetca
command again as shown below:

Puppetca --sign node1.localnet.net

Similarly, the system will respond with: Signed node1.localnet.net
 We specified the option --sign together with the hostname of the node whose certificate we wish to sign, in
this case, node1.localnet.net. You should now see that the command has returned a message indicating the
certificate is now signed. The node is now authenticated to the server.

If we go back to the client daemon, we will see logging messages indicating the certificate has been
returned, and the client has been started as shown below:

notice: Got signed certificate
notice: Starting Puppet client version 0.24.0

Then server will now compile and deliver any configuration for that node to the client daemon to be applied.

C4L8S45

Like most Unix and Linux applications, the Puppet
daemons, Puppetmasterd and Puppetd, can be
started and stopped using your platform’s standard
spawn process.

If you’ve installed Puppet from a package, you’ll
usually find that the package installation process
has added the appropriate links and scripts to start
the daemons when your host boots.

C4L8S46

Your Puppet installation comes with a number of binaries that run the various Puppet
functions and daemons. You have already reviewed Puppetd, Puppetmasterd, and
Puppetca binaries, but you will explore them in more detail in the next few screens.
we’ll go into more detail on them in the sections that follow. You will not learn every
configuration option, just the main ones. For a full reference to every command-line
and configuration file option, you can find a guide at:

http://www.reductivelabs.com/trac/Puppet/wiki/ConfigurationReference.

Each Puppet binary can be configured via the command line or via a configuration file
or files. A list of some of the key binaries are listed on the next screen.

Each binary has a different set of command-line options you can use to run and
configure it. The easiest way to see the configuration options used for each binary is by
executing the binary with the --help option as shown below:

Puppet –help

Note: To get the --help text, you need to have the RDoc library installed as discussed
earlier in this lesson.

http://www.reductivelabs.com/trac/puppet/wiki/ConfigurationReference

C4L8S47

Puppet binaries and description . . .

Binary Description

Puppet A local configuration script interpreter and executor

Puppetd The Puppet client daemon that runs on the managed host

Puppetmasterd The Puppet master daemon that manages the nodes

Puppetca The Puppet Certificate Authority server used to authenticate
nodes to the master server

Puppetrun A tool that can connect to clients and force them to run their
configurations

Filebucket A client to send files to a Puppet file bucket

Ralsh An interactive Puppet shell for converting current state into
Puppet configuration code

Pi Tool to output documentation about Puppet types and
providers

Puppetdoc Tool that prints Puppet reference documentation (generally only
used within other Puppet tools)

C4L8S48

Puppet configuration can also be managed via the configuration file. Puppet’s configuration file model is
similarly to INI files. Each file is divided into namespace sections, and each section name is enclosed in
parentheses and named for the Puppet function it configures. For example, the namespace used to
configure the Puppet client daemon is called [Puppetd].

The use of namespaces means options can be used in multiple namespaces if the option is relevant to the
binary being configured. For example, you can specify the same option twice, with different values, in the
[Puppetd] and [Puppetmasterd] namespaces, and each binary will use only the configuration option
contained in its own namespace.

Puppet also has support for multiple environments including production, testing, and
development. There is some documentation available describing multiple environments at
http://reductivelabs.com/trac/Puppet/wiki/UsingMultipleEnvironments.

You should view the configuration information located on the Puppet website for more detailed
configuration instructions.

http://docs.Puppetlabs.com/guides/configuring.html

http://reductivelabs.com/trac/puppet/wiki/UsingMultipleEnvironments
http://docs.puppetlabs.com/guides/configuring.html

C4L8S49

The Puppet master daemon is initiated by the
puppermasterd binary. This is the core of the
Puppet client-server model; the server compiles
and provides the compiled configuration to the
nodes.

In this section, we’ll look at some of the command-
line flags and configuration file options that can be
used to configure the Puppet master daemon.

Notes: Puppetmaster is an ongoing application in
progress. Please refer to the Project website for
the most current information on your version.

From ubuntu.com

http://cloud.ubuntu.com/2010/03/using-puppet-in-uecec2-puppet-support-in-ubuntu-images/
http://cloud.ubuntu.com/2010/03/using-puppet-in-uecec2-puppet-support-in-ubuntu-images/

C4L8S50

Flag Description

--daemonize | -D Daemonize the process (default)

--no-daemonize Do not daemonize the process

--debug | -d Enable debugging (leaves process in the
foreground)

--logdest | -1 file | console | syslog Specify logging destination (defaults to
syslog)

--mkusers Creates the initial set of users and
directories

--verbose | -v Enable verbose output (leaves process in
the foreground)

--help | -h Print help text

--version | -v Print the version

C4L8S51

--daemonize tells the Puppet master daemon to daemonize the process and is the default
behavior of the Puppetmasterd binary when executed

--no-daemonize option flag prevents the process being daemonized and leaves it running in the
foreground

--debug option causes the process to output debugging data. This is useful for troubleshooting.

--logdest flag lets you tell the master daemon where to output logging data. You have the choice
of specifying a file name, syslog output, or the console. It defaults to syslog output.

--mkusers flag only needs to be run once when you first install Puppet. It creates the required
Puppet user and group for Puppet to run as (if they were not yet created).

--verbose option outputs all logging messages to the command line.

--help and --version options print the help text and version, respectively.

C4L8S52

In the Puppet configuration file, there are some useful options for the [Puppetmasterd] namespace
that you can use to configure the Puppet master daemon. For example:

Option Description
user The user who should run the Puppet master daemon
group The group who should run the Puppet master daemon
manifestdir The directory to store configuration manifests, defaults to $confdir/manifests
manifest The name of the site manifest file, defaults to $manifestdir/site.pp
bindaddress The interface to which to bind the daemon
masterport The port to run the Puppet master daemon on

The user and group options tell Puppetmasterd what user and group to run as; this defaults to Puppet
in both cases.

The manifestdir and manifest options specify the directory for storing manifests and the name of the
site manifest file, which defaults to /etc/Puppet/manifests and /etc/Puppet/manifests/site.pp,
respectively.

The bindaddress and masterport options allow you to control what interface and port to which the
daemon must bind. These default to binding to all interfaces and to port 8140.

C4L8S53

Flag Description

--daemonize | -D Daemonize the process (default)

--no-daemonize Do not daemonize the process

--server name Name of the Puppet master server to which it must connect

--waitforcert | -w seconds Time in seconds between certificate signing requests

--onetime | -o Connect and pull down the configuration once and then exit

--noop Run in NOOP or dry-run mode

--disable Temporarily disable the Puppet client

--test | -t Enable some common testing options

--debug | -d Enable debugging (leaves process in the foreground)

--verbose | -v Enable verbose output (leaves process in the foreground)

--logdest | -1 file | console | syslog Specify logging destination (defaults to syslog)

--help | -h Print help text

--version | -v Print the version

The command-line operation of the Puppet client daemon is very similar to the operation of the master
daemon. It can be configured both from the command line and via a configuration file. In this section, we
will look at the options typically specified for the daemon.

C4L8S54

--daemonize option is the default action for the Puppetd process. If executed without options, it will
run in the background as a daemon

--no-daemonize option flag prevents the process being daemonized and leaving it running in the
foreground

--server option is used to specify the name of the Puppet master to which it must connect. It should be
specified as a fully qualified domain name

--waitforcert option only applies, as discussed in the “Starting the Puppet Client” section, for Puppet
nodes without a certificate. It indicates the time in seconds in between certificate signing requests to
a Puppet master. Once the node has a signed certificate, this option does nothing

--onetime option connects the client to the master, requests the node configuration, applies it, and
then exits

--noop option allows dry runs of configuration without actually applying the configuration. This allows
you to see what the new configuration will do without actually making any changes to the node

--verbose option will output logging messages with the proposed changes that you can verify for
accuracy

C4L8S55

On the following line, you can see an example of typical noop output:
notice: //File[/etc/group]/mode: is 644, should be 640 (noop)

The notice indicates that the /etc/group file’s permissions are 644, but the configuration would change
that to 640. The (noop) at the end of the message indicates that no change has been made.

--disable and --enable options allow you to turn on and off the Puppet client.

--disable option sets a lock file that prevents the Puppet client from running. The same lock file is set by
the Puppet client when running as a daemon to prevent the client from running twice.

--enable option removes the lock file and allows the client to run again on its normal schedule, by default
checking half-hourly.

--test option applies a number of common testing options including verbose logging, running in the
foreground, and exits after running the configuration once (the --onetime option).

--debug and --verbose options enable debug and verbose output from the daemon, and the --logdest
option allows you to specify where log data will be outputted: console, file, or syslog. The option defaults
to syslog output.

--help and --version print the help text and the version information.

C4L8S56

There are also some options you can specify in the configuration file to configure the Puppetd
daemon:

Option Description
server Puppet The Puppet master server to connect to, defaults to Puppet
runinterval seconds The interval between Puppet applying configuration in seconds,
 defaults to 1800 seconds, or a half-hour
Puppetdlockfile file The location of the Puppet lock file
Puppetport port The port that the client daemon listens on, defaults to 8139

The server option is the configuration file equivalent of the command-line –server option and allows
you to specify the Puppet master server to which you must connect. (It defaults to Puppet.)

The runinterval option controls how often configuration is applied to the Puppet node. It is from this
option that Puppet gets the default half-hourly application of configuration. The option is in seconds
and defaults to 1800 seconds.

The Puppetdlockfile option specifies the location of the lock file used by the –disable option to
control the running of the Puppet client. The option defaults to $statedir/Puppetdlock. The
Puppetdport option controls the port to which the client daemon binds. By default this is 8139.

C4L8S57

The Puppetca binary’s primary purpose is to control and interact with the Puppetmasterd’s built-in
certificate authority. Its principal purpose, if you do not use the automatic signing of certificates
(which is turned off by default), is to sign incoming requests from Puppet clients to authenticate new
nodes.

Note: As discussed, autosigning of certificates is dangerous, as anyone can authenticate to your Puppet
master. If you want to autosign certificates, use per-host authentication to authenticate only those
hosts you identify.

You have already seen Puppetca’s primary function when we connected our first node to Puppet.
Puppetca listed and signed certificate requests of new nodes using the --list and –sign options.

Puppetca --sign node1.localnet.net

You can specify more than one node on the command line, and you can also sign all outstanding
certificate requests by specifying the --all keyword. See example below:

Puppetca --sign –all

C4L8S58

Flag Description
--revoke | -r host Revoke a node’s certificate
--clean | -c host Remove a node’s certificate from the master
--generate | -g host Generate a client key/certificate pair
--debug | -d Enable debugging (leaves process in the foreground)
--verbose | -v Enable verbose output (leaves process in the foreground)
--help | -h Print help text
--version | -v Print the version

The --revoke option revokes a client’s certificate. You can specify a decimal number, the certificate’s
hexadecimal code, or the hostname of the client node. The certificate is added to Puppet’s Certificate
Revocation List (CRL). You can specify the CRL using the cacrl option in the Puppetmasterd
namespace. The master daemon needs to be restarted to update the CRL with the revoked
certificate.

The --clean option removes all files related to a particular node from the Puppet Certificate Authority.
This option is most useful for rebuilding nodes. It removes traces of the old certificate and allows you
to submit a new certificate signing request from the client.

The --generate option generates a certificate and key pair for the node or nodes specified on the
command line.

C4L8S59

We’ve looked at installing and configuration Puppet in this
Lesson, and there are a number of useful resources and
documentation online that can also help with this process:

Puppet’s trac site
Bug reports
Puppet support
Installation guide
Configuration reference
Mailing list
Language tutorial
Type references
Function reference
Style Guide
Best practices

Additional Reading
• Puppet modules
• File Serving
• Tips & Tricks
• Best Practices
• Troubleshooting

http://reductivelabs.com/trac/Puppet/register
http://reductivelabs.com/trac/Puppet/register
http://reductivelabs.com/trac/Puppet/register
http://reductivelabs.com/trac/Puppet/register
http://projects.puppetlabs.com/
http://reductivelabs.com/trac/Puppet/wiki/GettingHelp
http://reductivelabs.com/trac/Puppet/wiki/InstallationGuide
http://reductivelabs.com/trac/Puppet/wiki/ConfigurationReference
http://mail.madstop.com/mailman/listinfo/Puppet-users
http://reductivelabs.com/trac/Puppet/wiki/LanguageTutorial
http://reductivelabs.com/trac/Puppet/wiki/TypeReference
http://reductivelabs.com/trac/Puppet/wiki/FunctionReference
http://reductivelabs.com/trac/Puppet/wiki/StyleGuide
http://projects.puppetlabs.com/projects/Puppet/wiki/Puppet_Best_Practice2
https://help.ubuntu.com/community/Nagios2
http://docs.puppetlabs.com/guides/modules.html
http://docs.puppetlabs.com/guides/file_serving.html
http://docs.puppetlabs.com/guides/techniques.html
http://docs.puppetlabs.com/guides/best_practices.html
http://docs.puppetlabs.com/guides/troubleshooting.html

This lesson was created introduce Linux Administrators
to a remote system administrative tool named Puppet.

Puppet is a relatively new tool, still in the growing
stages, but showing great promise to being a heavy
hitter in the Linux enterprise world. Puppet is currently
used by several fortune 500 companies for managing
and maintaining cross platform Linux environments.

As this is a new application to the Linux community,
students familiar with Puppet have a good start in the
competitive IT world. With newly created Windows and
Apple support, Puppet is predicted to be a top
contender for enterprise System management in the
future.

C4L860

