
Self Direction & Constructivism in Programming
Education

Naomi R. Boyer, Sarah Langevin, Alessio Gaspar
University of South Florida Polytechnic

3433 Winter Lake Road, Lakeland, FL, 33803 USA
[Naomi | Sarah | Alessio] @ softice.lakeland.usf.edu

ABSTRACT
This paper explores the relationship between new constructivist
apprenticeship techniques meant to improve programming
pedagogy [6][7] and student self-direction. To this end, we used
the lens of the Personal Responsibility Orientation [2] to measure
the impact on student self-efficacy and self direction of our
interventions. These learning activities were introduced based on
peer learning and authentic student feedback principles. They
consisted of peer learning weekly forums and student-led “live
coding” hands-on exercises. These were applied to both an
introductory (cop2510 [14]) and intermediate (cop3515 [5])
programming courses. Results derived from an online anonymous
survey are presented and interpreted.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]: Computer
Science Education / Information Systems Education

General Terms
Design, Human Factors, Languages

Keywords

CS-1, Introductory Programming Courses, Self Directed Learning
1. INTRODUCTION
Our research aims at studying the relations between self-direction,
constructivist apprenticeship, and programming skills. This work
is motivated by the fact that computing professionals are required
to leverage self direction in their life-long learning in order to
adapt to new emerging technologies. Similarly, the creative nature
of programming requires students to often think outside of the box
and investigate alternative solutions on their own in order to
acquire genuine programming skills with higher cognitive
capabilities (i.e. with respect to Bloom’s Taxonomy).
Paradoxically, the role of self direction as a predictor of success
in programming courses, or as a way to help student efficiently
strategize their learning, has not been explored to date.

1.1 Defining Self Direction
For the purposes of this study, the Personal Responsibility
Orientation model [2] will be used as a foundation for
investigating self-directed behaviors in programming courses.
Brockett & Hiemstra describe self-direction as a combination of
process and personal elements in which an individual “assumes
primary responsibility for a learning experience” (pg. 24).
Within their model, despite the emphasis placed on the internal
characteristics of the individual, the social context also plays a
critical role surrounding the learning experience. Self-direction is
not a new concept [15] and many have attempted to find ways to
incorporate strategies to encourage self-directed behaviors within
certain learning environments and disciplines. The concept of
self-directed learning is aligned with any delivery, content area,
and context of learning. In a nationwide study, 64% of businesses
indicated that the applied skills of lifelong learning/self-direction
were expected to have an increasing importance over the next five
year [4]. While 78.3% businesses felt that lifelong learning/self-
direction were very important in the workforce, only 25.9% rated
4-year college graduates as excellent in this area. These concepts
are important in all fields, even more so in IT education.

1.2 Defining Programming
In this work, we will consider teaching programming through its
impact on enabling students to solve computing problems by
analyzing requirements, designing and implementing an
algorithmic solution in a programming language and evaluating
its correctness. Each components of this cognitive process falls
into one of the following categories.

Factual Knowledge encompasses many different types of
programming concepts such as definitions (e.g. what is a program,
what is a statement, what is an algorithm), syntactical rules in a
given programming language (e.g. C or Java), programming
building blocks (e.g. conditional and iterative statements),
programming patterns (e.g. which type of loop to use to solve a
specific category of problems), and understanding of how
programs execute and are interpreted by computers.

Programming skills involve the capability of translating in plain
English, and oftentimes ambiguous description of a computing
problem, into a solution. This solution is first designed, using
abstract notations (e.g. flowcharts, pseudo code), and then
implemented in a given programming language (e.g. C or Java).
Programming skills also require students to be able to evaluate the
correctness of their solution and justify each part of it as being a
step toward the achievement of the stated goals.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGITE 2008, October 16-18, 2008, Cincinnati, OH, USA
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

1.3 Problem Statement
Due to the many components of the programming thought
process, even a novice programmer needs to have a foundation in
all of the above-mentioned types of knowledge and skills before
be able to program solutions to computing problems. This leads to
a “bootstrapping” problem when trying to design a programming
pedagogy; do we need to teach each skill and knowledge
separately and in a specific order, introducing them only as
needed? Would it be better to teach a minimal level in each
knowledge and skills and then further study them in turns?

When facing this didactic dilemma, the former approach is often
favored. Many textbooks have introduced students to
programming by focusing on concepts and definitions first, thus
encouraging rote learning. While acceptable for the factual
aspects of programming, this often also encourage students to
practice by only cutting and pasting already written (and correct)
programs or by simply “filling in the blanks” in already almost
functional programs. The idea behind this instructional technique
is inspired by methods used to teach foreign languages; students
are first “immersed” in the language through conversations which,
later on, motivate the formal acquisition of grammatical structures
and vocabulary. While a contextualization of knowledge is
undeniably a sound strategy, this particular approach can lead to a
“loss of intentionality” in novice programmers [6].

This loss of intentionality can be described by students equating
“programming” with “using and adapting others’ programs”. This
encourages them to believe they don’t need to understand
programs in-depth anymore to be able to re-use them to solve new
problems. Later, this misconception leads them to face new
problems without any problem solving thought process but with a
pattern matching philosophy instead. Every new problem can be
related to the description of a pre-solved problem they studied.
The solution for the latter is then regurgitated as a first attempt at
solving the new problem. When this fails, the program is modified
to fit the new requirements. Because of the lack of in-depth
understanding of the programming activities or concepts, the
modifications end up being almost random (if students had a good
grasp on both concepts and skills they’d design their own solution
to start off with). This is further exacerbated by the ease with
which students can compile and test their programs and have
automated tools point out errors to them. This entire though
process is based on (1) pattern matching and (2) random
modifications based on automatic feedback. This is disturbingly
close to evolutionary computation’s genetic programming [11].

This issue also arises in courses where instructors make students
practice their programming skills by showing them a slide
describing a problem to solve, letting them work on it for a few
minutes, and then commenting abundantly on the listing of the
program implementing a correct solution. While there is clearly
an attempt here at teaching students how to solve problems from
scratch, this approach also reinforces the loss of intentionality.
This is especially true for students who have difficulty grasping
the programming thought process. These seize this opportunity to
build a “dictionary” of problems-solutions pairs. When facing a
new problem, they once again attempt to match its requirements
to already solved problems they collected and proceed with
adapting it more or less randomly. In either case, the outcome is a
pedagogy which does not teach students how to program but
rather teaches them about programming.

1.4 Traditional Educational Responses
The lack of focus on the programming though process itself can
be addressed by using cognitive apprenticeship [3]. This approach
can be illustrated by the BlueJ programming environment [10]
and the didactic developed by its authors in their textbook [1].
The key of these approaches is to have the instructor demonstrate,
preferably “live”, how (s)he would solve a given problem by
developing a solution from scratch. Students are generally
responsive to this pedagogical strategy which realigns what is
taught with the real learning outcomes; programming skills
themselves. Students are exposed repeatedly to the thought
process of the instructor which they can attempt to mimic or
internalize instead of simply being shown the final result
(complete working program) of the programming activity.

This approach is further improved by a recent emerging trend
which attempts to incorporate test-driven professional
development practices to novice programmers [13]. Test-driven
software development methodologies are based on the idea that a
test-harness should be developed prior to the development of the
code that solves a given problem. A test-harness can be seen as a
list of test cases which consist of a set of input values for the
program and a list of expected outcomes. Test-harness can be
implemented as programs or used as a list for educational
purposes. A program’s correctness is later on assessed by running
it for each test case and making sure the correct outcome is
produced. This approach is interesting from a pedagogical
perspective in so far that it can complement the traditional
learning activities focused on having students develop solutions
by activities which help them overcome the well documented
issues they have with deciding when their solutions are correct
[9]. While these efforts have been successful in overcoming the
learning barriers discussed in the previous sections, their
limitations provide room for improvement.

1.5 Pedagogical Specificities of our offerings
Our work focused on enhancing the pedagogy of instruction in
introductory and intermediate programming courses at both the
factual knowledge understanding and the programming skills
acquisition levels. This was achieved by developing learning
activities embedding two educational strategies.

First, we developed peer learning activities with the expectation
that it would provide a learning environment under which
students would complement the instructor-led teaching by
challenging each other. Our main motivation came from the
assumptions that (1) there are differences in expertise among the
students in the class and that (2) the difference between two
arbitrary students is on average smaller than between these
students and the instructor. Under these assumptions, we
conjectured that peer learning programming activities would
challenge students in their zone of proximal development (ZPD)
[17]. This can facilitate the design of suitable exercises since it
can be daunting otherwise for an instructor to adapt the pedagogy
of instruction to each and every student’s ZPD.

Second, we re-organized instruction based on an authentic
feedback model. Instead of basing pedagogy of instruction on the
instructor’s previous personal experience, published literature
(textbook) or published discipline-based education research, we
base it on the authentic learning barriers encountered by the
particular student population being taught. This is enabled by the

student-centered nature of the learning activities we implemented
in our courses. As we will describe below, students’ errors and
issues with specific learning barriers are explicated by these
activities and thus allow the instructor to react to them and then
adapt accordingly the method and content of instruction. It is
worth mentioning that this meta-strategy can prove superior to
simply adopting any didactic which proved efficient on a given
student population. It is common to find successful strategies in
the computing education literature, which quantitative impact on
student learning has been measured with statistical significance.
However, it is rare to see studies which provide enough
information on the student population to infer whether the results
are applicable at other institutions. For instance, a successful
strategy applied to Stanford’s full time students might not be
applicable to evening courses at a small campus, regardless of the
mathematical significance of the published statistics. Building in
authentic feedback from students allows to flexibly adapting
teaching methods to the real learning barriers encountered by the
students being taught without the need for (educated) guesses.

Following these two strategies, we implemented two learning
activities. First, Blackboard learning management system’s
discussion room features were used to engage students in weekly
discussion-based learning activities. After each class meeting,
students were given two days to read an assigned chapter (or a
video to watch). During this period, they would be responsible for
posting questions on the forums about anything unclear. This
participation was assessed and graded. After this first period,
students were invited to read all questions and pick a couple they
would attempt to respond to based on their own understanding of
the assigned material. To conclude this activity, students ranked
questions according to how much they wanted them to be
discussed during class time. At the next class meeting, the
instructor designed a lecture based on the issues posted on the
forums and answers. Besides encouraging peer learning dynamics
of the factual knowledge, this activity also responded to the need
for students to learn to read and understand technical information
on their own. While required from computing professional and
graduate students, this skill is seldom taught at undergraduate
level where it’s all too common for the “sage on the stage” to
almost read aloud the text to students. This is a barrier to develop
self-efficacy of students which end up assuming they need to be
guided to acquire more information.

The second instruction intervention utilized peer learning
activities meant to develop a student’s programming skills.
Cognitive apprenticeship methods were modified and new
constructivist elements were introduced. When an instructor
shows students how to develop solutions from scratch, the focus
of the teaching effort is aligned with the learning outcome.
However, the manner in which students are taught the
programming thought process is instructivist in essence; students
are passively watching the instructor demonstration just as they
watch lectures in other courses. We developed, as part of a
constructivist apprenticeship strategy [6], programming activities
which are student-led. The philosophy of constructivism assumes
that “human learning is constructed, that learners build new
knowledge upon the foundation of previous learning. This view of
learning sharply contrasts with one in which learning is the
passive transmission of information from one individual to
another, a view in which reception, not construction, is key” [8].
A student is picked and given a wireless keyboard and mouse set

connected to the podium PC which screen is projected for all to
see. For the duration of the exercise, this student will work out his
or her solution in front of the other students. This activity
develops critical thinking, troubleshooting and other
programming skills related to the evaluation of the correctness of
the solution being developed. Unlike instructor-led approaches,
this activity exposes the students’ thought process thus enabling
an apprenticeship learning which is guided by the authentic
learning barriers encountered by these specific students.

2. Method
2.1 Sample
This study was conducted with 15 students enrolled in junior level
programming courses during the fall, 2007. Preliminary work was
done during the spring, 2007, which focused on the teaching
methods employed in this study. There were eight in the
introductory course and another seven students in the intermediate
computer programming course. Most students in these courses
have transitioned from the community college into the university
following the 2+2 model established within the State of Florida.
Students in general are non-traditional in nature, taking evening
courses and working during the day. Tremendous variation exists
in the age of this student population, as some of these students
may have graduated from high school with the community college
degree and others may be more mature adults returning for further
education beyond technician type credentials.

The introductory course, COP 2510 Programming Concepts, is a
first-time programming course for Information Technology,
Computer Science, Computer Engineering, and a collection of
other majors and is labeled as cop2510 when referred to
throughout the paper. It uses the Java programming language with
a “fundamentals first” approach [14]. The intermediate course,
COP 3515 Program Design, is meant as a follow-up on the latter
and is taught to IT majors only. The C language was used for this
course to strengthen students’ skills and expose them to low-level
concepts (program stack, heap…) to prepare them for system-
oriented senior-level courses (e.g. operating systems). A classical
text from Deitel Associates is used for this course [5]. For some
students, cop3515 is their second exposure to the teaching
techniques utilized in the course.

2.2 Instrumentation
The PRO-SDLS “Learning Experience Scale” [16] instrument
was utilized as a basis for the survey that was designed to attempt
to capture the level of self-direction reported by students after
participating in the computer programming course experience.
The scale consists of 25 questions representing two
subcomponents: teaching learning transaction component and
learner characteristic component. Within these two
subcomponents are four factors: initiative, control, self-efficacy,
and motivation. Likert scale responses were used for these
questions and represented the values strongly disagree (1) to
strongly agree (5). Total possible score on the instrument is 125.
The initiative, control, and self-efficacy factors have a maximum
sum score of 30 with the motivation factor having a maximum
sum score of 35. Questions were slightly altered to respond to the
particular educational context and a post intervention
administration. The online instrument was administered during
class activities and was embedded within other course specific
questions that inquired as to the overall learning experience.

2.3 Procedures
To gather information about the successfulness of this technique
for facilitating student learning and the level of increased self-
directedness, the PRO-SDLS (2006) was administered as part of a
larger survey set via SurveyMonkey to determine the student’s
level of personal responsibility for the learning process. Students
were provided with the web link and asked to anonymously
complete the instrument during the final class session. While
participation in the study was voluntary, students were strongly
encouraged to complete the survey/instrument. A general open
ended question was included in the cop2510 survey. The
completion of the overall survey took students approximately 15
minutes, with a range from 8-20 minutes across all students.

2.4 Data Analysis
The data collection was facilitated electronically using
SurveyMonkey. The online tool provides basic frequency
information. The data were then transferred into other software
packages for further descriptive analysis. General means were
run for each question for each section and then the data combined
for a global perspective on the issue. Given that the open ended
question was only included for the beginning programming
course, the number of responses is significantly lower, thereby
only providing only minimal fodder for analysis.

3. Major findings
A total of fifteen students responded to the survey and completed
the PRO-SDLS. Mean raw scores (with std. dev. in parentheses)
for the beginning (cop 2510) and intermediate (cop3515) courses
were 93.75 (13.38) and 85.00 (8.93) respectively. Combined, the
resulting mean was 89.67 (12.00). Overall, cop2510 had
distinctively higher scores with much greater variation. A
complete listing of the descriptive statistics of raw scores can be
found in Table 1 including minimum and maximum values.

 Mean Std dev Min Max

cop 2510 (N=8) 93.75 13.38 72.00 112.00

cop 3515 (N=7) 85.00 8.93 71.00 95.00

Both 89.67 12.00 71.00 112.00

Table 1: Descriptive Statistics for PRO-SDLS scores

The questions from the instrument can be found in [16]. The
mean (4.13) on the five point scale for question 12 suggests that
the majority of students are convinced that they have the ability to
take control of their own learning. In addition, most students
indicated that they would spend additional time learning about
this topic after completion of the course (mean-4.13). The
cop2510 students (means noted in parentheses) indicated a level
of relevance in the course work (4.29), an ability to independently
find (4.29) (reverse scored) and use (4.14) materials outside of the
class applicable to the topic, and an ability to carry out their
student plan (reverse scored) (4.14). Further, this group also felt
confident in their ability to consistently motivate themselves
(4.14) and independently prioritize their goals (4.29), do extra
work because of a personal interest (4.14), connect course work
and personal goals (4.29) (reverse scored), work independently to
make changes to improve in the class (4.00), take responsibility
for their own learning (4.43), learn new things on their own
rather than wait for the instructor (4.14), and take personal control

over their learning (4.57). The cop3515 students knew why they
completed the work that they did (4.14) (reverse scored).

Students in cop2510 actually had higher SDLS scores than those
in cop3515 for almost all questions. The only factor that had
lower values for cop2510 was motivation at a mean of 20.63 for
all motivation questions vs. the cop3515’s value of 2.14. Table 2
provides information on the factors by component and course.

Teaching Learning Transaction Component

Initiative 2 9 10 15 17 25 Total

cop 2510 4.00 4.13 4.13 4.50 3.88 3.50 24.13

cop 3515 3.14 2.86 3.29 3.71 3.43 2.86 19.29

Control 4 5 6 13 19 23 Total

cop 2510 4.00 4.25 3.50 2.75 4.00 3.50 22.00

cop 3515 3.00 3.57 3.57 3.14 3.43 3.29 20.00

Learner Characteristics Component

Self-
Efficacy 1 7 12 21 22 24 Total

cop 2510 4.00 4.25 4.38 3.63 4.13 3.88 24.25

cop 3515 3.14 3.43 3.86 3.86 3.43 3.43 21.14

Motivation 3 8 11 14 16 18 20 Total

cop 2510 4.00 3.88 3.75 4.25 2.13 3.38 3.25 20.63

cop 3515 3.86 3.57 4.14 3.57 2.71 3.29 3.86 21.14

Table 2: Question Means by course for Each PRO-SDLS Component and
Factor (Note; same N values than other tables).

An open ended question was only provided to the students in
cop2510. Students shared comments that indicated an
appreciation for the instructional methods and an ability to take
responsibility for their own learning process and outcomes. The
open ended question was as follows: “Provide any complementary
feedback on how this course’s pedagogies have influenced your
self-direction in learning”. Of the eight students in cop2510, six
responded and their comments can be found in Table 3 below.

Student Comments

I love to program more, and I plan to do more programming in java.

G[ave] me the ability to motivate myself to a better perspective learning cycle.

The course influenced me because it is clear that in order to solve a problem the
steps needed to be followed.

The teaching style in this course has been extremely helpful to me personally beyond
just the course.

I have become more motivated to do my homework.

I really had to push myself to read the material and participate in the forums on the
deadlines.

Table 3: Student Comments to Open-Ended Prompt on the Topic of Self-
Direction (Note: grammatical and spelling alterations).

4. Discussions
The potential of using the above-mentioned peer learning
activities in introductory and intermediate programming courses
in order to help students overcome learning barriers, such as a loss

of intentionality when designing computer programs, is very
important for computing education. Organizational out-sourcing
and industry demands have stimulated discussion in higher
education about how to attract, retain, and graduate successful
information technology professionals that can respond to complex
computing needs and continue to learn from the constantly
changing and evolving demands of technology. To this end, new
instructional andragogical techniques have emerged from the field
that influence a student’s ability to self-direct when faced with
new technical issues that require a programming response.
Andragogy refers to the methods of teaching adults who are
different in development capacity, rather than the traditional
pedagogy that is implemented with adults in the higher education
setting [12]. There are a number of limitations that should be
considered when reviewing the results of this exploratory study.
The small number of participants in this study, limits any sort of
generalization and or strong conclusions. This is the first semester
of data collection, which will be expanded upon in future
semesters. In addition, the PRO-SDLS was administered at the
end of the semester to capture the student ratings of their increase
or decrease in self-directed behavior as a result of the class. To
capitalize on the type of information gathered as part of the PRO-
SLDS a pre and post administration would allow students to
assess their level of self-direction at the initiation and then the
conclusion of the course to look for changes in behavior and
perception. The instrument was piloted during this phase of the
study and will require some additional adjustment for clarity and
validity of concepts. The student open-ended comments were
solicited in only one course. Due to the relevance of this
information it will be included in each future administration.

Despite these limitations, a few initial observations can be offered
in regard to how the teaching method impacted the students’
learning and self-direction. In general the student comments
(offered only in one course) indicated an appreciation for the long
term benefit of the instructional methods. Students expressed the
use of self-directed strategies in other courses.

The scores (means) on the PRO-SDLS are within the moderate to
high range for each of the four factors with self-efficacy receiving
the highest overall scores for both courses. Table 4 indicates how
each of the factors were characterized as high, medium, or low
and the associated mean scores for each course based upon this
assumption. The cop2510 course had high scores for initiative
and self-efficacy, and moderate scores for control. The only score
that was lower for cop2510 than cop3515 was motivation. There
were no scores that stand out as high for cop3515 and there can be
no judgments made about each of the following two components;
teaching learning transaction and the learning characteristics.

Several factors need to be taken into consideration when
interpreting the scores results in both courses. Firstly, cop2510 is
a first programming course for most of the enrolled students. As
such, its student population comprises individuals who will
realize they are not interested in (or don’t have an intellectual
affinity with) programming. This course also generally includes
students from engineering, information technology, computer
science and computer engineering, thus providing for a variety of
perspective on the usefulness of programming for the student’s
future career. In such a context, the fact that students indicated
that the course’s pedagogies resulted in a high self-efficacy with
respect to programming and a high initiative, is extremely

rewarding and indicate that the teaching methods employed might
also have benefits in terms of motivating first-time programmers
to overcome their learning barriers with a new discipline. Given
the nation-wide enrollment decreases in computing disciplines,
we think that these methods should be further studied from this
perspective. It would be particularly interesting to compare our
approaches to other pedagogies currently used to attract students
in introductory computing courses but which often rely heavily on
multi-media and three dimensional interactive environments.
While extremely motivating, such methods often depict a picture
of the computing discipline which higher-level courses, bound to
present more technical and difficult aspects, might not be able to
sustain. This might results in attraction vs. long term retention.

Secondly, it might be expected that students enrolled in cop3515
will have already had opportunities to mature their learning
strategies. As such, their perception of the benefits of the
instructional methods used might not be as enthusiastic in so far
that they might consider these learning routines as “common
sense” rather than feel they are something new and beneficial.

Thirdly, cop3515 comprised only information technology majors
while, as discussed above, cop2510 was more heterogeneous. It is
not impossible that the observed differences might be indicators
of significant differences in the student populations which have
not been captured by our current instrument. The next measures
will include basic demographic information as well as data
regarding the student’s majors as well as their curricular and
extra-curricular workloads during the semester. Many IT students
have significantly different age and occupational profiles which
might explain differences in their learner profiles. Full time
workers, in particular, might be under constraints which prevent
them from participating to the learning activities which therefore
might not appear as useful as they could to them.

 Teaching Learning
Transaction Component

Learner Characteristics
Component

Category Initiative Control Self-efficacy Motivation

questions 6 6 6 7

Value Ranges
High 24-30
Moderate 15-23
Low-6-14

High 24-30
Moderate 15-23
Low-6-14

High 24-30
Moderate 15-23
Low-6-14

High 28-35
Moderate 16-27
Low-7-15

cop 2510
(N=8) 24.13 High 22.00 Moderate 24.25 High 20.63 Moderate

cop 3515
(N=7) 19.29 Moderate 20.00 Moderate 21.14 Moderate 21.14 Moderate

Table 4: Learning component, factor characterization, associated scale

It is also worth taking into consideration that, besides their impact
on the teaching and learning of programming, the instructional
activities described in this paper also worked on developing
learning skills which are indispensable to computing professional.
Among these, the most important is the ability to self-direct one’s
learning to adapt to an ever changing technological landscape.
The peer learning forums activities helped scaffolding the
development of technical reading skills. These will be relevant
during our students’ computing career regardless of whether they
have to program or not. While critical to professional and
graduate students alike, this skill is seldom practiced, let alone
with supports for progression through their personal ZPD, in
undergraduate courses. This makes the peer learning forum
activities worth further investigating on their own.

There are a number of questions resulting from this initial phase
of study that will be explored in future phases of this research.
While it is interesting that cop2510 students had overall higher
scores than cop3515 ones, it is unclear if this is only specific to
this small group or if a trend will develop. One contributing
element may be that cop2510 includes both engineering and
information technology students, while cop3515 is usually made
up of only information technology students. Do IT students rate
lower in personal responsibility for self-direction? As was
previously mentioned, continuing this research to increase the
number of participants will further enhance the study; however,
there are also plans to expand these approaches to students in
other disciplines. As a more general future study, it would be
beneficial to the IT field to explore how self-direction in IT
workers impacts employee performance in the field.

In addition, further work in assessing the impact of the use of
these techniques on the overall learning of programming are
important to determining the success or detraction from achieving
course objectives. Essentially, do the students also learn more as a
result of the intervening instructional method? Learning in this
type of study would need to be carefully defined in order to
determine if depth, breadth, or critical thinking is the original
intention of the programming experience.

The use of constructivist apprenticeship, live coding, and
antagonistic programming activities is extremely flexible and can
benefit beyond programming offerings on which we have been
focusing our discussion so far. Any course conveying a problem-
solving skill to students can benefit from these andragogical
strategies (e.g. accounting, software engineering, algorithms
design…). In this expanded context, “live coding” and “code peer
review” activities can be more broadly perceived as “peer
reviewed problem solving”, which then leads to the capacity for
self-direction within the broader context of problem solving.

5. REFERENCES
[1] Barnes, J., Kolling, M. (2006). Objects First With Java: A

Practical Introduction Using BlueJ (3rd Edition), Prentice
Hall, River Saddle NJ

[2] Brockett, R. G. & Hiemstra, R. (1991). Self-direction in
adult learning: Perspectives on theory, research, and practice.
London and New York: Routledge.

[3] Collins, A., Brown, J. S., & Newman, S. E. (1987).
Cognitive apprenticeship: Teaching the craft of reading,
writing and mathematics (Technical Report No. 403). BBN
Laboratories, Cambridge, MA. Centre for the Study of
Reading, University of Illinois. January, 1987.

[4] Conference Board, Corporate Voices for Working Families,
Partnership for 21st Century Working Skills, & Society for
Human Resource Management. (2006). Are they really ready
to work? Employer’s perspectives on the basic knowledge
and applied skills of new entrants to the 21st century U.S.
workforce. Retrieved December 17, 2007, from
http://21stcenturyskills.org/documents/FINAL_REPORT_P
DF09-29-06.pdf

[5] Deitel, H & Deitel, P. (2006). C How to program, 5/e,
Pearson Education, Prentice Hall, Upper Saddle River NJ
07458, ISBN-10: 0-13-240416-8

[6] Gaspar, A., Langevin, S., Boyer, N. (2007). Constructivist
Apprenticeship through Antagonistic Programming
Activities, Encyclopedia of Information Science &
Technology, 2/e, under review.

[7] Gaspar, A., Langevin, S. (2007b). Restoring “Coding With
Intention” in Introductory Programming Courses, SIGITE
2007, proceedings of the international conference of the
ACM Special Interest Group in Information Technology
Education, July 12-15, Orlando, FL (IN PRINT)

[8] Hoover, W.A. (1996). The practice implications of
constructivism, SEDL Letter, Vol. IX, No. 3.

[9] Kolikant, Y.B.D. (2005). Students' alternative standards for
correctness, Proceedings of the international workshop on
computing education research ICER

[10] Kolling, M., Quig, B., Patterson, A., Rosenberg, J. (2003).
The BlueJ system and its pedagogy, Journal of Computer
Science Education, special issue on learning and teaching
object technology, Vol. 13, No. 4, 12/2003

[11] Koza, J.R. (1992). Genetic programming: on the
programming of computers by means of natural selection,
MIT Press

[12] Knowles, Malcom (1990). A theory of adult learning:
adragogy'. In Knowles, Malcom ed., The Adult Learner: a
Neglected Species, 4th ed., pp. 27-65. Gulf Publishing
Company, Houston,TX.

[13] Langr, J. (2005), Agile Java: Crafting code with Test Driven
Development, Pearson

[14] Liang, Y.D. (2006). Fundamentals First Introduction to Java
Programming, 6/e, Prentice Hall, Upper Saddle River, NJ
07458, ISBN: 0-13-223738-5

[15] Merriam, S.B., & Brockett, R. G. (1997). The professional
and practice of adult education. San Francisco: Jossey-Bass.

[16] Stockdale, S. L., & Brockett, R. G. (2006). The continuing
development of the PRO-SDLS: An instrument to measure
self-direction in learning based on the personal responsibility
orientation model. Paper presented at the 20th International
Self-Directed Learning Symposium, Cocoa Beach, FL.

[17] Vygotsky, L.S. (1978). Mind and society: The development
of higher mental processes. Cambridge, MA: Harvard
University Press.

